大素数统计1e11以内 【数论】

算法原理:https://en.wikipedia.org/wiki/Prime-counting_function

素数统计

这是一篇对素数问题描述非常详细的一篇博客了
代码一:
复杂度大概O(n^(3/4))

#include <bits/stdc++.h>  
#define ll long long  
using namespace std;  
ll f[340000],g[340000],n;  
void init(){  
    ll i,j,m;  
    for(m=1;m*m<=n;++m)f[m]=n/m-1;  
    for(i=1;i<=m;++i)g[i]=i-1;  
    for(i=2;i<=m;++i){  
        if(g[i]==g[i-1])continue;  
        for(j=1;j<=min(m-1,n/i/i);++j){  
            if(i*j<m)f[j]-=f[i*j]-g[i-1];  
            else f[j]-=g[n/i/j]-g[i-1];  
        }  
        for(j=m;j>=i*i;--j)g[j]-=g[j/i]-g[i-1];  
    }  
}  
int main(){  
    while(scanf("%I64d",&n)!=EOF){  
        init();  
        cout<<f[1]<<endl;  
    }  
    return 0;  
}  

代码二:
复杂度大概O(n^(2/3))

#include<cstdio>  
#include<cmath>  
using namespace std;  
#define LL long long  
const int N = 5e6 + 2;  
bool np[N];  
int prime[N], pi[N];  
int getprime()  
{  
    int cnt = 0;  
    np[0] = np[1] = true;  
    pi[0] = pi[1] = 0;  
    for(int i = 2; i < N; ++i)  
    {  
        if(!np[i]) prime[++cnt] = i;  
        pi[i] = cnt;  
        for(int j = 1; j <= cnt && i * prime[j] < N; ++j)  
        {  
            np[i * prime[j]] = true;  
            if(i % prime[j] == 0)   break;  
        }  
    }  
    return cnt;  
}  
const int M = 7;  
const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;  
int phi[PM + 1][M + 1], sz[M + 1];  
void init()  
{  
    getprime();  
    sz[0] = 1;  
    for(int i = 0; i <= PM; ++i)  phi[i][0] = i;  
    for(int i = 1; i <= M; ++i)  
    {  
        sz[i] = prime[i] * sz[i - 1];  
        for(int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];  
    }  
}  
int sqrt2(LL x)  
{  
    LL r = (LL)sqrt(x - 0.1);  
    while(r * r <= x)   ++r;  
    return int(r - 1);  
}  
int sqrt3(LL x)  
{  
    LL r = (LL)cbrt(x - 0.1);  
    while(r * r * r <= x)   ++r;  
    return int(r - 1);  
}  
LL getphi(LL x, int s)  
{  
    if(s == 0)  return x;  
    if(s <= M)  return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];  
    if(x <= prime[s]*prime[s])   return pi[x] - s + 1;  
    if(x <= prime[s]*prime[s]*prime[s] && x < N)  
    {  
        int s2x = pi[sqrt2(x)];  
        LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;  
        for(int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]];  
        return ans;  
    }  
    return getphi(x, s - 1) - getphi(x / prime[s], s - 1);  
}  
LL getpi(LL x)  
{  
    if(x < N)   return pi[x];  
    LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;  
    for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1;  
    return ans;  
}  
LL lehmer_pi(LL x)  
{  
    if(x < N)   return pi[x];  
    int a = (int)lehmer_pi(sqrt2(sqrt2(x)));  
    int b = (int)lehmer_pi(sqrt2(x));  
    int c = (int)lehmer_pi(sqrt3(x));  
    LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2;  
    for (int i = a + 1; i <= b; i++)  
    {  
        LL w = x / prime[i];  
        sum -= lehmer_pi(w);  
        if (i > c) continue;  
        LL lim = lehmer_pi(sqrt2(w));  
        for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1);  
    }  
    return sum;  
}  
int main()  
{  
    init();  
    LL n;  
    while(~scanf("%lld",&n))  
    {  
        printf("%lld\n",lehmer_pi(n));  
    }  
    return 0;  
}  

4因子个数统计

代码一:
复杂度大概O(n^(3/4))

#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll f[340000],g[340000],n,k;//f[i] means pi(n/i),g[i] means pi(i)
ll dp(ll n){
    ll i,j,m,res=0;
    for(m=1;m*m<=n;++m)f[m]=n/m-1;
    for(i=1;i<=m;++i)g[i]=i-1;
    for(i=2;i<=m;++i){
        if(g[i]==g[i-1])continue;
        for(j=1;j<=min(m-1,n/i/i);++j){
            if(i*j<m)f[j]-=f[i*j]-g[i-1];
            else f[j]-=g[n/i/j]-g[i-1];
        }
        for(j=m;j>=i*i;--j)g[j]-=g[j/i]-g[i-1];
    }
    for(i=2;i<m;++i){
        if(g[i]==g[i-1])continue;
        res+=f[i]-g[i];
    }return res;
}
int main(){
    scanf("%I64d",&n);k=pow(n,1.0/3)+1e-9;
    printf("%I64d\n",dp(n)+g[k]);
}

代码二:
复杂度大概O(n^(2/3))

#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <string>
#include <bitset>
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
typedef pair<LL,LL> PLL;
#define clr(a,b) memset(a,b,sizeof(a))
#define MP make_pair
#define PB push_back
#define lrt rt<<1
#define rrt rt<<1|1
#define lson l,m,lrt
using namespace std;
/*------------------------- template ------------------------------*/
const int N = 5e6+2;
bool np[N];
int p[N],pi[N];
int getprime(){
    int cnt=0;
    np[0]=np[1]=true;
    pi[0]=pi[1]=0;
    for(int i = 2; i < N; ++i){
        if(!np[i]) p[++cnt] = i;
        for(int j = 1;j <= cnt && i * p[j] < N; ++j) {
            np[i * p[j]] = true;
        }
        pi[i]=cnt;
    }
    return cnt;
}
const int M = 7;
const int PM = 2*3*5*7*11*13*17;
int phi[PM+1][M+1],sz[M+1];
void init(){
    getprime();
    sz[0]=1;
    for(int i=0;i<=PM;++i)  phi[i][0]=i;
    for(int i=1;i<=M;++i){
        sz[i]=p[i]*sz[i-1];
        for(int j=1;j<=PM;++j){
            phi[j][i]=phi[j][i-1]-phi[j/p[i]][i-1];
        }
    }
}
int sqrt2(LL x){
    LL r = (LL)sqrt(x-0.1);
    while(r*r<=x)   ++r;
    return int(r-1);
}
int sqrt3(LL x){
    LL r = (LL)cbrt(x-0.1);
    while(r*r*r<=x)   ++r;
    return int(r-1);
}
LL getphi(LL x,int s){
    if(s == 0)  return x;
    if(s <= M)  return phi[x%sz[s]][s]+(x/sz[s])*phi[sz[s]][s];
    if(x <= p[s]*p[s])   return pi[x]-s+1;
    if(x <= p[s]*p[s]*p[s] && x< N){
        int s2x = pi[sqrt2(x)];
        LL ans = pi[x]-(s2x+s-2)*(s2x-s+1)/2;
        for(int i=s+1;i<=s2x;++i){
            ans += pi[x/p[i]];
        }
        return ans;
    }
    return getphi(x,s-1)-getphi(x/p[s],s-1);
}
LL getpi(LL x){
    if(x < N)   return pi[x];
    LL ans = getphi(x,pi[sqrt3(x)])+pi[sqrt3(x)]-1;
    for(int i=pi[sqrt3(x)]+1,ed=pi[sqrt2(x)];i<=ed;++i){
        ans -= getpi(x/p[i])-i+1;
    }
    return ans;
}
LL lehmer_pi(LL x){
    if(x < N)   return pi[x];
    int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
    int b = (int)lehmer_pi(sqrt2(x));
    int c = (int)lehmer_pi(sqrt3(x));
    LL sum = getphi(x, a) + LL(b + a - 2) * (b - a + 1) / 2;
    for (int i = a + 1; i <= b; i++) {
        LL w = x / p[i];
        sum -= lehmer_pi(w);
        if (i > c) continue;
        LL lim = lehmer_pi(sqrt2(w));
        for (int j = i; j <= lim; j++) {
            sum -= lehmer_pi(w / p[j]) - (j - 1);
        }
    }
    return sum;
}
//照素数统计只多了这么个部分.. 
LL getans(LL x){ // x < 1e11
    LL ans = pi[sqrt3(x)];
    for(int i=1,ed=pi[sqrt2(x-1)];i<=ed;++i){
        ans += lehmer_pi(x/p[i])-i;
    }
    return ans;
}
int main(){

    init();
    LL n;
    while(cin>>n){
        cout<<getans(n)<<endl;
    }
    return 0;
}
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值