一、下载并安装Anaconda
利用自己的电脑下载好anaconda后利用FileZilla上传到服务器上,之后再对应目录下安装Anaconda
bash ~/Downloads/Anaconda3-5.2.0-Linux-x86_64.sh
如果后续出现问题,可以直接删掉anaconda这一文件目录将其卸载
rm -rf anaconda3
建议清理下.bashrc中的Anaconda路径:
1.到根目录下,打开终端并输入:
sudo gedit ~/.bashrc
2.在.bashrc文件末尾用#号注释掉之前添加的路径(或直接删除):
#export PATH=/home/lq/anaconda3/bin:$PATH
保存并关闭文件
3.使其立即生效,在终端执行:
source ~/.bashrc
4.关闭终端,然后再重启一个新的终端,这一步很重要,不然在原终端上还是绑定有anaconda.
二、在anaconda中创建新的环境
conda create -n py36 python=3.6 anaconda
激活环境
conda activate py36
备注
退出环境
conda deactivate
删除环境
conda remove -n py36 --all
有时候会显示没有conda
conda: command not found
这个时候,我们需要把它添加到环境变量中去,才能用conda命令
export PATH=~/anaconda3/bin:$PATH
三、安装Tensorflow / Keras
添加清华镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
可以通过下述指令直接安装GPU版本,而且这里面会自动安装CUDA,cudnn.
conda install keras-gpu
但这样有时会出现一些问题,比如CUDA版本过高,因此可以考虑使用下述方法指定CUDA版本
conda install keras-gpu cudatoolkit==9.0
pytorch
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
四、检测
检测是否使用了GPU
import tensorflow as tf
tf.test.gpu_device_name()
torch.cuda.is_available()
#返回True代表支持,False代表不支持
检测使用了哪块儿GPU
from tensorflow.python.client import device_lib
device_lib.list_local_devices()
五、建立本地文件到服务器的映射并使用远程解释器
https://blog.csdn.net/qq_24495287/article/details/83449189
最终选择路径如下: