Ubuntu / Windows下利用anaconda配置Tensorflow-GPU并利用Pycharm远程运行

一、下载并安装Anaconda

利用自己的电脑下载好anaconda后利用FileZilla上传到服务器上,之后再对应目录下安装Anaconda

bash ~/Downloads/Anaconda3-5.2.0-Linux-x86_64.sh

如果后续出现问题,可以直接删掉anaconda这一文件目录将其卸载

rm -rf anaconda3

建议清理下.bashrc中的Anaconda路径:

1.到根目录下,打开终端并输入:

sudo gedit ~/.bashrc

2.在.bashrc文件末尾用#号注释掉之前添加的路径(或直接删除):

#export PATH=/home/lq/anaconda3/bin:$PATH

保存并关闭文件

3.使其立即生效,在终端执行:

source ~/.bashrc

4.关闭终端,然后再重启一个新的终端,这一步很重要,不然在原终端上还是绑定有anaconda.

二、在anaconda中创建新的环境

conda create -n py36 python=3.6 anaconda

激活环境

conda activate py36

备注

退出环境

conda deactivate

删除环境

conda remove -n py36 --all

有时候会显示没有conda
conda: command not found
这个时候,我们需要把它添加到环境变量中去,才能用conda命令

export PATH=~/anaconda3/bin:$PATH

三、安装Tensorflow / Keras

添加清华镜像

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

可以通过下述指令直接安装GPU版本,而且这里面会自动安装CUDA,cudnn.

conda install keras-gpu

但这样有时会出现一些问题,比如CUDA版本过高,因此可以考虑使用下述方法指定CUDA版本

conda install keras-gpu cudatoolkit==9.0

pytorch

conda install pytorch torchvision cudatoolkit=9.0 -c pytorch

四、检测

检测是否使用了GPU

import tensorflow as tf
tf.test.gpu_device_name()

torch.cuda.is_available()
#返回True代表支持,False代表不支持

检测使用了哪块儿GPU

from tensorflow.python.client import device_lib
device_lib.list_local_devices()

五、建立本地文件到服务器的映射并使用远程解释器

https://blog.csdn.net/qq_24495287/article/details/83449189

最终选择路径如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值