[图像特征匹配]SIFT、SURF、ORB算法笔记以及代码实现

本文详细介绍了SIFT、SURF和ORB三种图像特征匹配算法,包括它们的原理、步骤及代码实现。SIFT算法通过构建尺度空间和检测极值点来获取稳定关键点,而SURF则使用Hessian矩阵提升计算效率,ORB则是结合了FAST特征点和BRIEF描述子的快速算法。每种算法都包含了关键点的检测、方向计算和描述子生成,且在匹配过程中各有特点,如ORB使用汉明距离进行匹配。
摘要由CSDN通过智能技术生成

SIFT、SURF、ORB算法学习笔记

一、 SIFT

    尺度不变特征转换(Scale-invariant feature transform)是一种用来侦测与描述影像中的局部性特征的视觉算法,即通过求一幅图中的特征点及其有关尺度和方向的描述子得到特征,并进行图像特征点匹配。SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等,噪声也保持一定程度的稳定性,除此之外SIFT还具有独特性,多量性,高速性,可扩展性等特点。

(1)构建尺度空间

①尺度空间的表示
    二维图像的尺度空间函数L,高斯函数与原图像的卷积。 L ( x , y , σ ) = G ( x , y , σ D ) ∗ I ( x , y ) (公式1) L(x,y,\sigma)=G(x,y,\sigma_D)*I(x,y) \tag{公式1} L(x,y,σ)=G(x,y,σD)I(x,y)(1)

其中二维高斯函数为:
G σ ( x , y ) = 1 2 π σ 2 e x p ( − x 2 + y 2 2 σ 2 ) (公式2) G_\sigma(x,y)=\frac{1}{\sqrt{2\pi \sigma^2}}exp(-\frac{x^2+y^2}{2\sigma^2}) \tag{公式2} Gσ(x,y)=2πσ2 1exp(2σ2x2+y2)(2)

符号“*”表示卷积。
    在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆,如图分布不为零的像素组成的卷积矩阵与原始图像做变换。每个像素的值都是周围相邻像素值的加权平均。(根据高斯函数的可分离性,可对二维高斯模糊函数进行改进。)

图1.1 二维高斯函数的曲面表示

② 高斯金字塔的构建
    尺度空间在实现时使用高斯金字塔表示,高斯金字塔的构建分为两部分:对图像做不同尺度的高斯模糊;对图像做降采样(隔点采样)。后来有(2)点改进得到了高斯差分金字塔。

(2)使用DOG近似LOG定位极值点(关键点)

①(laplacian-gauss)LOG
    LOG(高斯-拉普拉斯算子)是一种边缘检测算子,产生稳定的图像特征。公式为:
L o g ≜ Δ G σ ( x , y ) + ∂ 2 G σ ( x , y ) ∂ y 2 = x 2 + y 2 − 2 σ 2 σ 4 e ( x 2 + y 2 ) 2 σ 2 (公式3) Log \triangleq \Delta G_\sigma(x,y)+ \frac{\partial^2G_\sigma(x,y)}{\partial y^2}=\frac{x^2+y^2-2\sigma^2}{\sigma^4}e^{\frac{(x^2+y^2)}{2\sigma^2}} \tag{公式3} LogΔGσ(x,y)+y22Gσ(x,y)=σ4x2+y22σ2e2σ2(x<

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>