最近搞天线的时候对于阻抗匹配和馈电的概念比较混淆,借着这个设计我把匹配彻底搞清楚,为以后的学习扫除一个障碍吧。
在Microwave和RF电路中,各种传输线、天线、器件之间的输入阻抗或者特性阻抗并不是全都相等,在连接的时候会产生很多弊端,比如反射、还有电压的行驻波分布、额外的噪声等等。所以我们需要用匹配网络来进行匹配。
匹配网络的主要目的有四个:1.减小反射2.实现最大功率传输(共轭匹配)3.减小噪声4.改善振幅和相位分布。
我们的匹配网络通常有以下几种组态:1.L型(由集总参数元件设计的)和它的衍生,比如Π型等等 2.支节匹配器,包括常见的单支节、双支节 3.四分之波长变换器(单节或者多节) 4.宽带阻抗变换器(渐变线)。
我们的求解方法一般有两种,解析法和圆图,为了直观和避免复杂的计算,我们常常使用圆图来进行设计。
对一个圆图上确定的点(实际上是一个复阻抗)进行移动的时候,就相当于是在串联或者并联电抗,具体地说,串联电抗就是顺着等阻抗圆运动,并联电抗就是顺着导纳圆运动。如图:
显然,一个集总参数化的微波电路,其源阻抗和负载阻抗就相当于两个点,分别有其电阻和导纳圆,这四个圆产生的交点的个数就应该等于实现匹配可能存在的路径数目,也就是匹配网络组态的数目。我们根据实际路径得到归一化的需要串并联的电抗值,最后去归一化即可。
对于支节匹配器,串并联支节就相当于串并联电抗,在圆图中把一个点变换到我们想要的点后,移动的电长度就是支节的长度,这里不做过多介绍。
这里我们主要介绍几种多节四分之波长变换器。包括切比雪夫、二项式、勒让德三种结构。
首先说一下,单节的四分之波长变换器,实际上只能在点频上实现变换,所以我们使用多阶的四分之波长变换器以获得一个比较可观的频带特性。
对于多阶的四分之波长变换器,我们在分析的时候定义一个局部反射系数,也就是每一节有一个反射系数,最后总的反射系数由每一节加上相移组成
切比雪夫多节变换器用带内的纹波为代价获得了一个可观的带宽,我们首先介绍切比雪夫多项式:
观察前文的式(3),反射系数正好可以用有用形式的切比雪夫多项式来综合!而且一个N节的变换器对应的反射系数正好是一个N阶切比雪夫多项式!
于是我们有了如下这个重要的式子:
A就是通带内允许的最大反射系数(VSWR)
相对带宽=2-(4θm/Π)。
确定了θm之后带入,展开切比雪夫多项式,一一对比即可知道每一节的反射系数,从而知道每一节的设计参数。
这里我的设计是将100Ω输入阻抗的天线匹配到50Ω的阻抗上,要求频带是100Mhz-400Mhz,VSWR<1.5.
由公式可知,反射系数最大值为0.2
Z1/Z0=1.2727
Z2/Z0=1.3634
Z3/Z0=1.4669
Z4/Z0=1.5715
得出Z1=63.64Ω Z2=68.17Ω Z3=73.35Ω Z4=78.58Ω
为了得到更好的匹配效果,进行了修正,电路如下:
结果如下:
可以看到阻抗匹配的效果非常好,通带内基本符合切比雪夫的等纹波特性。
由于篇幅有限,下一期再介绍勒让德结构!
谢谢观看!有这方面的问题欢迎QQ咨询459007310