B super_log(找规律 + 欧拉降幂)
题目链接:https://nanti.jisuanke.com/t/41299




题面分析转载自:https://blog.csdn.net/oampamp1/article/details/100191908
代码:
#include<bits/stdc++.h>
using namespace std;
#define maxn 101010
#define MOD(a,b) a>=b?a%b+b:a
#define ll long long
map<ll,ll>mp;
ll n,m,p;
ll qpow(ll a,ll b,ll mod)
{
ll res=1;
while(b)
{
if(b&1)res=MOD(res*a,mod);
a=MOD(a*a,mod);
b>>=1;
}
return res;
}
ll phi(ll k)
{
ll x=k,s=k;
if(mp.count(k))return mp[k];
for(int i=2;i*i<=k;i++)
{
if(k%i==0)s=1ll*s/i*(i-1);
while(k%i==0) k/=i;
}
if(k>1)s=s/k*(k-1);
mp[x]=s;
return s;
}
// 前边全是模板
ll solve(int x,ll mod, int cnt)
{
if ( cnt==m-1||mod==1 ) { // 这个地方是递归的结束条件
return MOD(x,mod);
}
return qpow(x,solve(x,phi(mod),cnt+1),mod);
}
int main()
{
int listt;
cin >> listt;
while ( listt-- ) {
scanf("%lld%lld%lld",&n,&m,&p);
if (m==0) printf("%lld\n",(ll)(1%p)); // 加一条特判
else printf("%lld\n",solve(n,p,0)%p);
}
return 0;
}
本文分享了Bsuper_log问题的解决思路,采用找规律与欧拉降幂法结合的方法,通过具体代码实现展示了如何高效求解大数幂运算模问题。文章详细介绍了递归求解过程,并给出了特判条件,适用于算法竞赛和数学问题解决。
8462

被折叠的 条评论
为什么被折叠?



