( 数论专题 )【 欧拉降幂 】

( 数论专题 )【 欧拉降幂 】

摘要

  本文主要介绍了数论中的欧拉定理,进而介绍欧拉定理的拓展及应用,结合例题展示如何使用拓展欧拉定理实现降幂取模。


  在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质定理。了解欧拉定理之前先来看一下费马小定理:

    a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)

  欧拉给出了推广形式

    若n,a为正整数且互质,则,其中φ(n)表示小于等于m的数中与n互质的数的数目。可以看出费马小定理是欧拉定理的一种特殊情况。

  首先看一个基本的例子。令a = 3,n = 5,这两个数是互素的。比5小的正整数中与5互素的数有1、2、3和4,所以φ(5)=4。计算:a^{φ(n)} = 3^4 =81,而81= 80 + 1 Ξ 1 (mod 5)。与定理结果相符。

  然后使用欧拉定理实现简化幂的模运算。比如计算7^{222}的个位数,实际是求7^{222}被10除的余数。7和10[互素],且φ(10)=4。由欧拉定理知7^4Ξ1(mod 10)。所以7^{222}=(7^4)^55*(7^2)Ξ1^{55}*7^2Ξ49Ξ9 (mod 10)。于是该7^{222}的个位数就是9。

  最后将欧拉定理拓展到a和m不互质的情况

欧拉phi函数—详解

欧拉降幂模板

#include<bits/stdc++.h>
using namespace std;
#define maxn 101010
#define MOD(a,b) a>=b?a%b+b:a
#define ll long long
unordered_map<int,int>mp;
int n,q,l,r;
ll m,w[maxn];
ll qpow(ll a,ll b,ll mod)
{
    ll res=1;
    while(b)
    {
        if(b&1)res=MOD(res*a,mod);
        a=MOD(a*a,mod);
        b>>=1;
    }
    return res;
}
ll phi(ll k)
{
    ll x=k,s=k;
    if(mp.count(k))return mp[k];
    for(int i=2;i*i<=k;i++)
    {
        if(k%i==0)s=1ll*s/i*(i-1);
        while(k%i==0) k/=i;
    }
    if(k>1)s=s/k*(k-1);
    mp[x]=s;
    return s;
}
ll solve(int id,ll mod)
{
    if(id==r||mod==1)return MOD(w[id],mod);    // 递归的结束条件。
    return qpow(w[id],solve(id+1,phi(mod)),mod);
}
int main()
{
    scanf("%d%lld",&n,&m);
    for(int i=1;i<=n;i++)scanf("%lld",&w[i]);
    scanf("%lld",&q);
    while(q--)
    {
        scanf("%d%d",&l,&r);
        printf("%lld\n",solve(l,m)%m);
    }
    return 0;
}

 


 

例题1   Exponial    Gym - 101550E

题意:如题

思路:套欧拉降幂模板。

代码:

#include<bits/stdc++.h>
using namespace std;
#define maxn 101010
#define MOD(a,b) a>=b?a%b+b:a
#define ll long long
map<ll,ll>mp;
ll n,m,w[maxn];
ll qpow(ll a,ll b,ll mod)
{
    ll res=1;
    while(b)
    {
        if(b&1)res=MOD(res*a,mod);
        a=MOD(a*a,mod);
        b>>=1;
    }
    return res;
}
ll phi(ll k)
{
    ll x=k,s=k;
    if(mp.count(k))return mp[k];
    for(int i=2;i*i<=k;i++)
    {
        if(k%i==0)s=1ll*s/i*(i-1);
        while(k%i==0) k/=i;
    }
    if(k>1)s=s/k*(k-1);
    mp[x]=s;
    return s;
}
ll solve(int id,ll mod)
{
    if(id==1||mod==1)return MOD(id,mod);    // 递归结束条件
    return qpow(id,solve(id-1,phi(mod)),mod);  // 每次id-1, 模变成phi(mod)
}
int main()
{
    scanf("%lld%lld",&n,&m);
    printf("%lld\n",solve(n,m)%m);
    return 0;
}

 

例题2    B super_log    

题目链接:https://nanti.jisuanke.com/t/41299

题面分析转载自:https://blog.csdn.net/oampamp1/article/details/100191908

代码:

#include<bits/stdc++.h>
using namespace std;
#define maxn 101010
#define MOD(a,b) a>=b?a%b+b:a
#define ll long long
map<ll,ll>mp;
ll n,m,p;
ll qpow(ll a,ll b,ll mod)
{
    ll res=1;
    while(b)
    {
        if(b&1)res=MOD(res*a,mod);
        a=MOD(a*a,mod);
        b>>=1;
    }
    return res;
}
ll phi(ll k)
{
    ll x=k,s=k;
    if(mp.count(k))return mp[k];
    for(int i=2;i*i<=k;i++)
    {
        if(k%i==0)s=1ll*s/i*(i-1);
        while(k%i==0) k/=i;
    }
    if(k>1)s=s/k*(k-1);
    mp[x]=s;
    return s;
}
// 前边全是模板 
ll solve(int x,ll mod, int cnt)
{
    if ( cnt==m-1||mod==1 ) { // 这个地方是递归的结束条件
        return MOD(x,mod);
    }
    return qpow(x,solve(x,phi(mod),cnt+1),mod); 
}

int main()
{
    int listt;
    cin >> listt;
    while ( listt-- ) {
        scanf("%lld%lld%lld",&n,&m,&p);
        if (m==0) printf("%lld\n",(ll)(1%p)); // 加一条特判
        else printf("%lld\n",solve(n,p,0)%p);
    }

    return 0;
}

 

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值