LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-Local Relations 论文笔记


摘要

这项工作旨在解决 Text-to-SQL 任务中具有挑战性的异质图由不同成分组成的图)编码问题。以前的方法通常是以节点为中心,仅仅利用不同的权重矩阵来对边类型进行参数化,这些方法

  • 忽略了嵌入在边的拓扑结构中的丰富语义信息
  • 不能区分每个节点的局部和非局部关系

为此,我们提出了一个 Line Graph Enhanced Text-SQL(LGESQL) 模型来挖掘底层的关系特征,而无需构建元路径。由于line graph的存在,信息不仅通过节点之间的连接,而且通过有向边的拓扑结构更有效地传播。此外,在图的迭代过程中,局部和非局部的关系都被不同程度地整合。我们还设计了一个辅助任务,叫做图的修剪,以提高encoder的辨别能力。在撰写本报告时,我们的框架在跨领域文本到SQL基准的Spider上取得了 state-of-the-art(GLOVE为62.8%,ELECTRA为72.0%)。

1.Introduction

  • Text-to-SQL任务旨在给出相应的数据库模式,将自然语言问题转换为SQL查询。它已经在学术界和工业界被广泛研究,以建立数据库的自然语言接口。

  • 一个艰巨的问题是如何联合编码问题词和数据库模式项目(包括表和列),以及这些异质输入之间的各种关系。通常情况下,以前的文献利用以节点为中心的图形神经网络(GNN)来汇总相邻节点的信息,GNNSQL采用了关系图卷积网络(RGCN)来考虑模式项之间的不同边类型

  • 然而,这些边特征是直接从一个固定大小的参数矩阵中获取的,可能会有一个缺点:不知道文本化的信息,特别是边的结构拓扑。元路径 被定义为连接两个对象的组合关系,它可以用来捕捉多跳语义,举例:在图1(a)中,Q-exact match-C C-belong to-T 可以形成一个2跳元路径,表示某个表T 有一个列C正好在问题Q中被提到
    在这里插入图片描述

  • 尽管RATSQL引入了一些有用的元路径,如 C-same table-C,但它处理所有的关系,无论是1跳还是多跳,都是以同样的方式(相对位置嵌入)表示在一个完整的图中。

  • 如果不区分局部(1跳邻居)和非局部邻居,见 图1(b),每个节点将平等地关注所有其他节点,这可能导致过度平滑问题 (局部和非局部邻居应该被区别对待)
    在这里插入图片描述

  • 此外,元路径目前是由领域专家构筑的,或者通过广度优先搜索来探索。不幸的是,可能的元路径的数量随着路径长度的增加而呈指数级增长,在其中选择最重要的子集是一个NP-complete问题

  • 为了解决上述限制,我们提出了一个 Line Graph Enhanced Text-SQL(LGESQL) 模型,它明确考虑了边的拓扑结构。

  • 根据 line graph线型图) 的定义,我们首先从原来的以节点为中心的图中构建一个以边为中心的图,这两个图显示了节点和边的结构拓扑。

  • 迭代地,两个图中的每个节点都从其邻域收集信息,并从双图中提取边缘特征来更新其表示。对于以节点为中心的图,我们将局部和非局部的边特征都纳入计算。

  • 局部边特征表示 1跳 关系,由 line graph 中的 node embeddings 动态 提供,而非局部边特征则直接从参数矩阵中提取,这种区别鼓励模型要更多地关注局部的边特征。

2.Preliminaries

2.1 Problem definition

整个输入节点为中心的异质图 G n G^{n} Gn = ( V n V^{n} Vn, R n R^{n} Rn) 由三种类型的节点组成,即
在这里插入图片描述

  • 其中,Q为问题,T为对应的数据库 schema 的Table,C 为 column,R 是边的类型
    在这里插入图片描述

  • ∣ V n ∣ |V^{n}| Vn 是节点总数

2.2 Meta-path

  • 图1(a) 所示,一个 meta-path 代表一个路径

    在这里插入图片描述

  • 它在两个类型 τ 1 \tau_{1} τ1 τ 2 \tau_{2} τ2 的节点之间描述了一组复合关系 r = r 1 r_{1} r1 ∘ \circ r 2 r_{2} r2 ⋅ \cdot ⋅ \cdot ⋅ \cdot ∘ \circ r l r_{l} rl (即描述了两个节点之间存在的边的类型信息,边的类型包括 QUESTION,TABLE,COLUMN)

  • 在本文的讨论中,我们使用 local 来表示长度为 1 的路径(局部路径),而长度 大于1 的路径为非局部路径。

  • 关系邻接矩阵 R n R^{n} Rn 中包含局部关系和非局部关系

2.3 Line Graph

离散数学里面的对偶图,把原图的边转换为节点,把节点转化为边

  • line graph G e G^{e} Ge = ( V e V^{e} Ve, R e R^{e} Re) 中的每一个节点 v i e v_{i}^{e} vie , i i i = 1,2,…,| V e V^{e} Ve| 可以唯一映射到原始节点中心图 G n G^{n} Gn = ( V n V^{n} Vn, R n R^{n} Rn)的一条有向边 r s t n r^{n}_{st} rstn,或者 v s n v_{s}^{n} vsn --> v t n v_{t}^{n} vtn

  • Function f 将源节点和目标节点的索引元组(s,t)映射到 line graph G e G^{e} Ge 中点的索引(相当于把 G n G^{n} Gn中两个节点之间的边映射到 G e G^{e} Ge中的节点),表示为 i = f(s,t),反向映射表示为 f − 1 f^{-1} f1相当于把

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值