传感技术复习笔记(6)——磁电式传感器

1 基本原理

  • 磁电式传感器是通过磁电作用将被测量(如振动、位移、转速等)转换成电信号的一种传感器。
  • 磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号,是一种有源传感器。
  • 磁电式传感器有时也称作电动式或感应式传感器, 它只适合进行动态测量。由于它有较大的输出功率,故配用电路较简单;零位及性能稳定。
  • 其主要原理是利用磁通量的改变。

2 结构形式的分类

2.1 变磁通式结构

  • 永久磁铁1(俗称“磁钢”)与线圈4(缠绕在磁轭2上)均固定,动铁心3(衔铁)的运动使气隙5和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构。
    在这里插入图片描述

2.2 恒磁通式结构

  • 工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。
    在这里插入图片描述

3 霍尔效应

  • 在半导体薄片中通以电流I,在与薄片垂直方向加磁场B,则在半导体薄片的另外两端,产生一个大小与控制电流I和B乘积成正比的电
你好!对于nnUNet的使用教程,我可以为你提供一些基本的指导。nnUNet是一个用于医学图像分割的开源框架,旨在简化深度学习模型在医学图像上的训练和推理过程。 以下是一个简单的nnUNet使用教程的大纲: 1. 安装nnUNet:首先,你需要安装nnUNet框架。你可以在nnUNet的GitHub页面找到安装说明。 2. 数据准备:准备你的医学图像数据集。确保你的数据集包含正确的标签,并将其划分为训练集、验证集和测试集。 3. 数据预处理:nnUNet要求对数据进行预处理,包括将图像和标签裁剪为相同大小、进行数据增强等。你可以使用nnUNet提供的预处理脚本来完成这些操作。 4. 配置实验:创建一个配置文件来定义你的实验设置。在配置文件中,你需要指定数据路径、模型架构、训练参数等。 5. 训练模型:使用nnUNet提供的训练脚本开始训练模型。根据你的配置文件,nnUNet将自动加载数据并开始训练。 6. 模型评估:在训练完成后,你可以使用nnUNet提供的评估脚本评估模型在测试集上的性能。 7. 模型推理:使用已经训练好的模型进行推理。nnUNet提供了推理脚本,你可以使用它来对新的医学图像进行分割。 请注意,这只是一个简要的教程大纲。如果你需要更详细的教程或遇到特定问题,请参考nnUNet的文档或在相关论坛上寻求帮助。祝你成功使用nnUNet进行医学图像分割!
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值