高频电子线路复习笔记(2)——高频电路基础

作者:BerenCamlost

1 LC谐振电路

1.1 串并联谐振回路

1.1.1 并联谐振回路

并联谐振回路

  • 阻抗:
    Z p ( j ω ) = V 0 ( j ω ) I g ( j ω ) Z_p(j\omega )=\frac{V_0(j\omega )}{I_g(j\omega )} Zp(jω)=Ig(jω)V0(jω)
  • 这个电路还可以等效成:
    2
  • 在基于保持其等效阻抗和Q值不变的情况下,满足如下关系:
    R p ≈ Q 2 R s ; X p ≈ X s Rp ≈ Q^2 Rs;Xp ≈ Xs RpQ2RsXpXs

1.1.2 串联谐振回路

3

  • 其阻抗和并联谐振回路正好互为倒数,为:
    Z p ( j ω ) = I o ( j ω ) V g ( j ω ) Z_p(j\omega )=\frac{I_o(j\omega )}{V_g(j\omega )} Zp(jω)=Vg(jω)Io(jω)

1.2 谐振角频率ωo

  1. 回路无阻尼振荡角频率:
    ω 0 = 1 L C \omega _0=\frac{1}{\sqrt{LC}} ω0=LC 1
  2. 谐振角频率可近似为ωo

1.3 有载品质因数

  1. 串联与并联回路Q值相同,可以用下列公式计算:
    Q = ω 0 L R s = 1 ω 0 C R s = ω 0 C R p = R p ω 0 L Q=\frac{\omega _0L}{R_s}=\frac{1}{\omega _0CR_s}=\omega _0CR_p=\frac{R_p}{\omega _0L} Q=Rsω0L=ω0CRs1=ω0CRp=ω0LRp
  2. 如果Q不考虑电容的损耗(Rs),就等于电感的固有Q
  3. 在加入信号源和负载的情况下,如下图所示:
    1.3-1
    此时得到的有载品质因数的计算公式
    Q e = R Σ ω 0 L Q_e=\frac{R_\Sigma }{\omega_0 L} Qe=ω0LRΣ
    其中:
    C Σ = C g + C + C L , R Σ = R p / / R g / / R L C_\Sigma =C_g+C+C_L, R_\Sigma =R_p//R_g//R_L CΣ=Cg+C+CLRΣ=Rp//Rg
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值