作者:BerenCamlost
1 LC谐振电路
1.1 串并联谐振回路
1.1.1 并联谐振回路
- 阻抗:
Z p ( j ω ) = V 0 ( j ω ) I g ( j ω ) Z_p(j\omega )=\frac{V_0(j\omega )}{I_g(j\omega )} Zp(jω)=Ig(jω)V0(jω) - 这个电路还可以等效成:
- 在基于保持其等效阻抗和Q值不变的情况下,满足如下关系:
R p ≈ Q 2 R s ; X p ≈ X s Rp ≈ Q^2 Rs;Xp ≈ Xs Rp≈Q2Rs;Xp≈Xs
1.1.2 串联谐振回路
- 其阻抗和并联谐振回路正好互为倒数,为:
Z p ( j ω ) = I o ( j ω ) V g ( j ω ) Z_p(j\omega )=\frac{I_o(j\omega )}{V_g(j\omega )} Zp(jω)=Vg(jω)Io(jω)
1.2 谐振角频率ωo
- 回路无阻尼振荡角频率:
ω 0 = 1 L C \omega _0=\frac{1}{\sqrt{LC}} ω0=LC1 - 谐振角频率可近似为ωo
1.3 有载品质因数
- 串联与并联回路Q值相同,可以用下列公式计算:
Q = ω 0 L R s = 1 ω 0 C R s = ω 0 C R p = R p ω 0 L Q=\frac{\omega _0L}{R_s}=\frac{1}{\omega _0CR_s}=\omega _0CR_p=\frac{R_p}{\omega _0L} Q=Rsω0L=ω0CRs1=ω0CRp=ω0LRp - 如果Q不考虑电容的损耗(Rs),就等于电感的固有Q
- 在加入信号源和负载的情况下,如下图所示:
此时得到的有载品质因数的计算公式:
Q e = R Σ ω 0 L Q_e=\frac{R_\Sigma }{\omega_0 L} Qe=ω0LRΣ
其中:
C Σ = C g + C + C L , R Σ = R p / / R g / / R L C_\Sigma =C_g+C+C_L, R_\Sigma =R_p//R_g//R_L CΣ=Cg+C+CL,RΣ=Rp//Rg