题目
1.翻转二叉树
题目链接
直观的思路是就把每一个节点的左右孩子交换一下就可以了,
深度优先-递归法
前序,后序遍历方法都没有问题,但中序的递归法会存在问题。
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if(root==nullptr) return root;
// 前序遍历
swap(root->left, root->right);
invertTree(root->left);
invertTree(root->right);
return root;
}
};
深度优先-迭代法
在迭代法-统一写法下,前序,后序遍历方法都没有问题,就是在while循环else接口处设置std::swap()
函数交换左右子节点的位置。但是唯独中序遍历不方便,因为中序遍历会把某些节点的左右子节点翻转了两次。解释:因为中序遍历的特殊点:不同于前序,后序在遍历过程中在一开始,或结尾处交换左右子节点的位置,而中序在交换左,右子节点中间调换了左右子节点,所以第二个递归参数应该是现在的左子树才是原来的右子树。
TreeNode* invertTree(TreeNode* root) {
stack<TreeNode*> st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop();
if (node->right) st.push(node->right); // 右
if (node->left) st.push(node->left); // 左
st.push(node); // 中
st.push(NULL);
} else {
st.pop();
node = st.top();
st.pop();
swap(node->left, node->right); // 节点处理逻辑
}
}
return root;
}
2.对称二叉树
题目链接
给定一个二叉树,检查它是否是镜像对称的。对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,理解这一点就知道了其实我们要比较的是两个树(这两个树是根节点的左右子树),所以在递归遍历的过程中,也是要同时遍历两棵树。
递归法
终止条件为:子树头节点L,R的节点数值不相等以及头节点出现节点为nullptr的情况
1.左节点为空,右节点不为空,不对称,return false
2.左节点不为空,右节点为空,不对称 return false
3.左右节点都为空,对称,返回true
然后就可以单层递归的逻辑,单层递归的逻辑就是处理左右子树头节点都不为空,且数值相同的情况
1.比较两子树外侧头节点:传入的是左节点的左节点,右节点的右节点。
2.比较两子树内侧头节点:传入左节点的右节点,右节点的左节点。
3.如果左右节点都对称就返回true ,有一侧不对称就返回false,使用与逻辑运算符 。
bool compare(TreeNode* left, TreeNode* right){
// 处理不同左右节点的终止条件
if(left == nullptr && right != nullptr) return false;
else if(left != nullptr && right == nullptr) return false;
else if(left == nullptr && right == nullptr) return true;
else if(left->val != right->val) return false;
bool outside = compare(left->left, right->right);
bool intside = compare(left->right, right->left);
bool isame = outside && intside;
return isame;
}
bool isSymmetric(TreeNode* root) {
if(root==nullptr) return true;
return compare(root->left, root->right);
}
深度优先-迭代法
迭代法,其实是把左右两个子树要比较的元素顺序放进一个容器,然后成对成对的取出来进行比较,那么其实使用栈也是可以的,主要是比较的子节点的逻辑不错:left->left
与right->right
,left->right
与right->left
进行比较,使用队列queue
,堆stack
都能实现该功能。
bool isSymmetric(TreeNode* root) {
if (root == NULL) return true;
queue<TreeNode*> que;
que.push(root->left); // 将左子树头结点加入队列
que.push(root->right); // 将右子树头结点加入队列
while (!que.empty()) { // 接下来就要判断这两个树是否相互翻转
TreeNode* leftNode = que.front(); que.pop();
TreeNode* rightNode = que.front(); que.pop();
if (!leftNode && !rightNode) { // 左节点为空、右节点为空,此时说明是对称的
continue;
}
// 左右一个节点不为空,或者都不为空但数值不相同,返回false
if ((!leftNode || !rightNode || (leftNode->val != rightNode->val))) {
return false;
}
que.push(leftNode->left); // 加入左节点左孩子
que.push(rightNode->right); // 加入右节点右孩子
que.push(leftNode->right); // 加入左节点右孩子
que.push(rightNode->left); // 加入右节点左孩子
}
return true;
}
3.二叉树的最大深度
题目链接
二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数或者节点数(取决于高度从0开始还是从1开始)
本题可以使用前序(中左右),也可以使用后序遍历(左右中),使用前序求的就是深度,使用后序求的是高度。
这题在二叉树的层序遍历的求二叉树最大深度里提及到了。
深度优先-递归法
// 使用了后序搜索
class Solution {
public:
int maxDepth(TreeNode* root) {
if(root==nullptr) return 0;
int left = maxDepth(root->left);
int right = maxDepth(root->right);
int depth = 1+max(left, right);
return depth;
}
};
// 使用了前序搜索
class Solution {
private:
int depth;
void coutdepth(TreeNode* root, int deep){
if(root==nullptr) return;
if(root->left == nullptr && root->right == nullptr) depth = max(deep, depth);
if(root->left) coutdepth(root->left, deep+1);
if(root->right) coutdepth(root->right, deep+1);
return;
}
public:
int maxDepth(TreeNode* root) {
if(root==nullptr) return 0;
coutdepth(root, 1);
return depth;
}
};
4.二叉树的最小深度
题目链接
这与求最大深度有点不同,最小深度是从根节点到最近叶子节点的最短路径上的节点数量。注意是叶子节点,叶子节点是没有子节点的节点。
递归法
// 后序搜索-递归
class Solution {
public:
int minDepth(TreeNode* root) {
if(root==nullptr) return 0;
int left = minDepth(root->left);
int right = minDepth(root->right);
if(root->left==nullptr) return 1+right;
else if(root->right==nullptr) return 1+left;
else return 1+min(left,right);
}
};
// 前序搜索-递归
class Solution {
private:
int depth;
void coutdepth(TreeNode* root, int deep){
if(root==nullptr) return;
if(root->left==nullptr && root->right==nullptr) depth=min(depth, deep);
if(root->left) coutdepth(root->left, deep+1);
if(root->right) coutdepth(root->right, deep+1);
return;
}
public:
int minDepth(TreeNode* root) {
if(root==nullptr) return 0;
depth = INT_MAX;
coutdepth(root, 1);
return depth;
}
};
因此需要在求最大深度的代码种,除了将max
改为min
,还需要加入两个if的判断,以返回其单子节点的情况。
5.完全二叉树的节点个数
题目链接
对于普通的二叉树,我们使用任意遍历方法,统计二叉树中节点的数量即可。
递归法
求左子节点的数量,求右子节点的数量,最后把两者取和+1,就得到该节点(包含自己)的节点数量。
int getNodesNum(TreeNode* cur) {
if (cur == NULL) return 0;
int leftNum = getNodesNum(cur->left); // 左
int rightNum = getNodesNum(cur->right); // 右
int treeNum = leftNum + rightNum + 1; // 中
return treeNum;
}
此时时间复杂度是:O(n),空间复杂度是O(log n)。
对于深度优先,广度优先-迭代法,只要在遍历到的节点时,令变量result+1即可。
对于完全二叉树
在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。并且完全二叉树只有两种情况,情况一:就是满二叉树;情况二:最后一层叶子节点没有满。
- 如何计算子节点的数量?可以通过判断其子树是不是满二叉树,如果是则利用==公式(2^depth-1)==计算这个子树(满二叉树)的节点数量,如果不是则继续下一层检查,直至找到满二叉树的子树,或者叶子节点。
- 如何判断是否是满二叉树?在完全二叉树的条件下,若向左遍历深度等于向右遍历深度,则该二叉树是满二叉树。
class Solution {
public:
int countNodes(TreeNode* root) {
if(root==nullptr) return 0;
TreeNode* left = root->left;
TreeNode* right = root->right;
int left_d = 0, right_d = 0;
while(left){
left = left->left;
left_d++;
}
while(right){
right = right->right;
right_d++;
}
// 找到满二叉树,则计算返回
if(left_d==right_d) return pow(2,left_d+1) -1;
// 进入下一层遍历
int leftnum = countNodes(root->left);
int rightnum = countNodes(root->right);
int res = leftnum + rightnum + 1;
return res;
}
};
此时时间复杂度是: O ( l o g n × l o g n ) O(log n × log n) O(logn×logn),空间复杂度是 O ( l o g n ) O(log n) O(logn)。
6.平衡二叉树
题目链接
给定一个二叉树,判断它是否是高度平衡的二叉树:一个二叉树每个节点的左右两个子树的高度差的绝对值不超过1。
注意高度和深度的区别。在维基上以边为一度,但leetcode上以节点为一度,笔记以leetcode为准。
前序遍历是求二叉树节点深度相关的问题,使用后序遍历符合求解二叉树节点的高度相关的问题(另外根节点的高度就是这棵树的最大深度):
终止条件依然是节点是否为空;单层递归逻辑是,分别求左右子节点的高度,并判断两者高度差,若高度差小于等于1,返回该节点的最大高度,若高度差大于1则返回其高度为-1(正常而言节点的高度>0),这样就会使上层的节点高度返回值均大于1,最后返回-1,以-1为标志位。
递归法
int geteHeight(TreeNode* root){
// 终止条件
if(root==nullptr) return 0;
// 单层递归逻辑
int leftH = geteHeight(root->left);
if(leftH==-1) return -1;
int rihgtH = geteHeight(root->right);
if(rihgtH==-1) return -1;
return abs(leftH-rihgtH)>1? -1:1+max(leftH, rihgtH);
}
bool isBalanced(TreeNode* root) {
return geteHeight(root) == -1? false : true;
}
迭代法
需要预拟定一个函数-求节点高度(后序遍历);然后在前序遍历中,找每一个节点的高度,对比左右子节点的高度差是否满足条件即可。
7.二叉树的所有路径
题目链接
给定一个二叉树,返回所有从根节点到叶子节点的路径。因此这类似根节点深度的求法,只是终止条件改变为了该节点的左右子节点是否为空,题目要求从根节点到叶子的路径,所以需要前序遍历,这样才方便让父节点指向孩子节点,找到对应的路径。
递归法
在使用递归法的时候,切记回溯和递归是一一对应的,有一个递归,就要有一个回溯。
// path作为引用传入,在递归回溯时需要pop_back
void traversal(TreeNode* root, std::vector<int>& path, std::vector<std::string>& result){
path.push_back(root->val); //path添加当前节点值
if(root->left==nullptr && root->right==nullptr){
std::string sPath;
for(int i=0; i<path.size()-1; i++){
sPath += to_string(path[i]);
sPath += "->";
}
sPath += to_string(path[path.size()-1]);
result.push_back(sPath);
return;
}
// 单层递归逻辑
if(root->left){
traversal(root->left, path, result);
path.pop_back(); //回溯
}
if(root->right){
traversal(root->right, path, result);
path.pop_back(); //回溯
}
}
vector<string> binaryTreePaths(TreeNode* root) {
std::vector<std::string> result;
std::vector<int> path;
if(root==nullptr) return result;
traversal(root, path, result);
return result;
}
// 简化版
class Solution {
private:
void traversal(TreeNode* root, string path, vector<string>& res){
path += to_string(root->val);
if(root->left==nullptr && root->right==nullptr){
res.push_back(path);
return;
}
if(root->left) traversal(root->left, path+"->", res);
if(root->right) traversal(root->right, path+"->", res);
}
public:
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> res;
string path;
traversal(root, path, res);
return res;
}
};
8.左叶子之和
题目链接
这道题目要求左叶子之和,其实是比较绕的,因为不能判断本节点是不是左叶子节点,需要通过通过节点的父节点判断本节点的属性。因此需使用后序遍历的方法。
因此递归的终止条件应该是 判断到达叶子节点
单层递归逻辑是 求该子树的左叶子节点的和
递归法
int sumOfLeftLeaves(TreeNode* root) {
if(root == nullptr) return 0;
if(root->left==nullptr && root->right==nullptr) return 0;
int leftvalue = sumOfLeftLeaves(root->left);
int rightval = sumOfLeftLeaves(root->right);
if(root->left && !root->left->left && !root->left->right){
leftvalue = root->left->val;
}
int sum = leftvalue + rightval;
return sum;
}
迭代法
int sumOfLeftLeaves(TreeNode* root) {
stack<TreeNode*> st;
if (root == NULL) return 0;
st.push(root);
int result = 0;
while (!st.empty()) {
TreeNode* node = st.top();
st.pop();
if (node->left != NULL && node->left->left == NULL && node->left->right == NULL) {
result += node->left->val;
}
if (node->right) st.push(node->right);
if (node->left) st.push(node->left);
}
return result;
}
总结
-
递归函数什么时候需要返回值?什么时候不需要返回值?以下总结三点:
- 如果需要搜索二叉树且不用处理递归返回值,递归函数就不要返回值
- 如果需要搜索二叉树且需要处理递归返回值,递归函数就需要返回值。
- 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径就要及时返回。
-
思考如何根据两个顺序构造唯一一个二叉树
- 以后序数组的最后一个元素为切割点,先切中序数组,根据所切割的左中序数组大小作为切割点,反过来再切后序数组
- 一层一层地切下去,每次后序数组最后一个元素就是节点元素
因为后序数组的最后一个元素必为最深的父节点,而中序数组中相邻的元素会被父节点所切割
-
构造树一般采用前序遍历,因为先构造中间节点,再构造左,右子节点。