pandas中的.assign()方法

pandas中的.assign()方法用于创建一个新的DataFrame,其中包含现有DataFrame的副本,并附加了指定的新列或更新了现有列。

.assign()方法的基本语法如下:

new_df = df.assign(new_column_name = new_column_values)

其中,new_df是创建的新DataFrame,df是现有的DataFrame,new_column_name是新列的名称,new_column_values是新列的值。

示例用法:

import pandas as pd

# 创建一个示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8]})

# 使用.assign()方法创建一个新的DataFrame,并添加一个新列'C',其中的值为列'A'和列'B'的和
new_df = df.assign(C = df['A'] + df['B'])

print(new_df)

输出:

   A  B   C
0  1  5   6
1  2  6   8
2  3  7  10
3  4  8  12

在上面的示例中,我们使用.assign()方法创建了一个新的DataFrame new_df,并添加了一个名为’C’的新列,其中的值是列’A’和列’B’的和。

.assign()方法还可以链式使用,以添加多个新列或更新现有列。例如:

new_df = df.assign(C = df['A'] + df['B'], D = df['A'] * df['B'])

这将创建一个新的DataFrame new_df,其中包含列’C’和列’D’,分别是列’A’和列’B’的和以及乘积。

需要注意的是,.assign()方法返回的是一个新的DataFrame,原始的DataFrame df并没有被修改。如果需要在原始DataFrame上进行就地更新,可以使用赋值操作符(= )进行操作。例如:

df['C'] = df['A'] + df['B']

这将在原始DataFrame df上添加一个名为’C’的新列。

希望这能帮助到你理解pandas中.assign()方法的用法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值