基于高斯过程的贝叶斯优化

基于Bayes_opt实现GP优化

bayes-optimization是最早开源的贝叶斯优化库之一,也是为数不多至今依然保留着高斯过程优化的优化库。由于开源较早、代码简单,bayes-opt常常出现在论文、竞赛kernels或网络学习材料当中,因此理解Bayes_opt的代码是极其重要的课题。不过,bayes-opt对参数空间的处理方式较为原始,也缺乏相应的提效/监控功能,对算力的要求较高,因此它往往不是我们进行优化时的第一首选库。通常来说,当且仅当我们必须要实现基于高斯过程的贝叶斯优化,且算法的参数空间中带有大量连续型参数时,我们才会优先考虑Bayes_opt库。

pip install bayesian-optimization #安装Bayes_opt库
pip install hyperopt #安装Hyperopt库
import numpy as np
import pandas as pd
import time

#算法/损失/评估指标等
import sklearn
from sklearn.ensemble import RandomForestRegressor as RFR
from sklearn.model_selection import KFold, cross_validate

#优化器
from bayes_opt import BayesianOptimization

import hyperopt
from hyperopt import hp, fmin, tpe, Trials, partial

生成数据集

import numpy as np
from sklearn.datasets import make_regression

# Generate a regression dataset
X, y = make_regression(n_samples=1000, n_features=10, random_state=1412)

1 定义目标函数

目标函数的值即𝑓(𝑥)的值。贝叶斯优化会计算𝑓(𝑥)在不同𝑥上的观测值,因此𝑓(𝑥)的计算方式需要被明确。在HPO过程中,我们希望能够筛选出令模型泛化能力最大的参数组合,因此𝑓(𝑥)应该是损失函数的交叉验证值或者某种评估指标的交叉验证值。

Notes:

  1. 在定义目标函数时,我们需要确保超参数作为输入,而不是整个超参数空间或其他元素,例如数据或算法超参数。因此,目标函数的输入必须是具体的超参数值。

  2. 当需要对算法的实际参数进行调整时,需要注意超参数的输入值只能是浮点数,不支持整数或字符串。如果算法参数需要是字符串,则无法使用bayes_opt进行调整;如果参数需要是整数,则需要在目标函数中规定参数的类型。

  3. bayes_opt只能寻找𝑓(𝑥)的最大值,而不能寻找最小值。因此,当目标函数代表某种损失时,输出需要取负值。例如,如果使用RMSE作为目标函数,则应该让目标函数输出负的RMSE,以便最大化负的RMSE,从而实现最小化真正的RMSE。对于准确率、AUC等指标作为目标函数的情况,则可以保持输出值不变。

def bayesopt_objective(n_estimators,max_depth,max_features,min_impurity_decrease):
    
    #定义评估器
    #需要调整的超参数等于目标函数的输入,不需要调整的超参数则直接等于固定值
    #默认参数输入一定是浮点数,因此需要套上int函数处理成整数
    reg = RFR(n_estimators = int(n_estimators)
              ,max_depth = int(max_depth)
              ,max_features = int(max_features)
              ,min_impurity_decrease = min_impurity_decrease
              ,random_state=1412
              ,verbose=False #可自行决定是否开启森林建树的verbose
              ,n_jobs=-1)
    
    #定义损失的输出,5折交叉验证下的结果,输出负根均方误差(-RMSE)
    #注意,交叉验证需要使用数据,但我们不能让数据X,y成为目标函数的输入
    cv = KFold(n_splits=5,shuffle=True,random_state=1412)
    validation_loss = cross_validate(reg,X,y
                                     ,scoring="neg_root_mean_squared_error"
                                     ,cv=cv
                                     ,verbose=False
                                     ,n_jobs=-1
                                     ,error_score='raise'
                                     #如果交叉验证中的算法执行报错,则告诉我们错误的理由
                                    )
    
    #交叉验证输出的评估指标是负根均方误差,因此本来就是负的损失
    #目标函数可直接输出该损失的均值
    return np.mean(validation_loss["test_score"])

2 定义参数空间

在bayes_opt中,我们使用字典方式来定义参数空间,其中参数的名称为键,参数的取值范围为值。且任意参数的取值范围为双向闭区间,以下方的空间为例,在n_estimators的取值中,80与100都可以被取到。

Notes:

  1. bayes_opt只支持填写参数空间的上界与下界,不支持填写步长等参数;
  2. bayes_opt会将所有参数都当作连续型超参进行处理,因此bayes_opt会直接取出闭区间中任意浮点数作为备选参数。例如,取92.28作为n_estimators的值;
  3. 输入bayes_opt的参数空间天生会比其他贝叶斯优化库更大/更密,因此需要的迭代次数也更多
param_grid_simple = {'n_estimators': (80,100)
                     , 'max_depth':(10,25)
                     , "max_features": (10,20)
                     , "min_impurity_decrease":(0,1)
                    }

3 定义优化目标函数的具体流程

  1. 一旦我们确定了目标函数和参数空间,就可以按照bayes_opt的规则进行优化了。在任何贝叶斯优化算法的实践过程中,都会涉及到一定程度的随机性,比如随机抽取点作为观测点,随机抽样部分观测点进行采集函数的计算等。在大多数优化库中,这种随机性是无法被控制的,即使允许我们填写随机数种子,优化算法也无法被固定下来。因此,尽管我们可以尝试填写随机数种子,但需要记住每次运行优化算法时都会产生不同的结果。

  2. 尽管优化算法无法被精确复现,但是得出的最佳超参数结果却是可以被复现的。一旦优化完成,可以从优化算法的实例化对象中获取最佳参数组合和最佳分数,然后将最佳参数组合输入到交叉验证中,这样一定可以复现其最佳分数。如果未能复现最佳分数,那么可能是由于交叉验证过程中的随机数种子设置存在问题,或者优化算法的迭代流程存在问题。

def param_bayes_opt(init_points,n_iter):
    
    #定义优化器,先实例化优化器
    opt = BayesianOptimization(bayesopt_objective #需要优化的目标函数
                               ,param_grid_simple #备选参数空间
                               ,random_state=1412 #随机数种子,虽然无法控制住
                              )
    
    #使用优化器,记住bayes_opt只支持最大化
    opt.maximize(init_points = init_points #抽取多少个初始观测值
                 , n_iter=n_iter #一共观测/迭代多少次
                )
    
    #优化完成,取出最佳参数与最佳分数
    params_best = opt.max["params"]
    score_best = opt.max["target"]
    
    #打印最佳参数与最佳分数
    print("\n","\n","best params: ", params_best,
          "\n","\n","best cvscore: ", score_best)
    
    #返回最佳参数与最佳分数
    return params_best, score_best

5 执行实际优化流程

在这里插入图片描述

  • 28
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个基于高斯过程贝叶斯优化的Python代码示例: ``` import numpy as np from scipy.stats import norm from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import ConstantKernel, Matern # 定义目标函数 def target_function(x): return np.sin(3*x) + x**2 - 0.7*x # 定义贝叶斯优化函数 def bayesian_optimization(n_iters, sample_loss, bounds): # 定义高斯过程回归模型 kernel = ConstantKernel(1.0) * Matern(length_scale=1.0, nu=2.5) gp = GaussianProcessRegressor(kernel=kernel, alpha=1e-6) # 初始化参数和损失列表 x_list = [] y_list = [] # 迭代优化 for i in range(n_iters): # 根据高斯过程模型和边界值抽样生成一个候选点 x = np.random.uniform(bounds[:, 0], bounds[:, 1], size=(1, bounds.shape[0])) # 计算候选点的目标函数值 y = sample_loss(x) # 更新参数和损失列表 x_list.append(x) y_list.append(y) # 在更新高斯过程回归模型 X = np.concatenate(x_list, axis=0) Y = np.concatenate(y_list, axis=0) gp.fit(X, Y) # 返回参数和损失列表中的最优值 best_idx = np.argmax(y_list) return x_list[best_idx], y_list[best_idx] # 定义损失函数为目标函数的负值 def sample_loss(x): return -target_function(x) # 定义参数边界值 bounds = np.array([[-1.0, 2.0]]) # 进行贝叶斯优化 x_best, y_best = bayesian_optimization(n_iters=20, sample_loss=sample_loss, bounds=bounds) # 输出最优解和目标函数值 print("最优解:", x_best) print("目标函数值:", -y_best) ``` 在上面的代码中,我们首先定义了一个目标函数 `target_function`,这个函数是我们要优化的函数。然后我们定义了 `bayesian_optimization` 函数,这个函数使用高斯过程回归模型进行贝叶斯优化,其中参数 `n_iters` 是迭代次数,`sample_loss` 是损失函数,`bounds` 是参数的边界值。在 `bayesian_optimization` 函数中,我们使用高斯过程回归模型和边界值抽样生成一个候选点,然后计算其目标函数值,最后更新高斯过程回归模型。在迭代结束后,我们返回参数和损失列表中的最优值。 接下来我们定义了损失函数 `sample_loss`,这个函数是目标函数的负值,因为我们要最小化目标函数。最后我们定义了参数的边界值 `bounds`,这个例子中我们只有一个参数,所以是一个二维数组。 最后我们调用 `bayesian_optimization` 函数进行贝叶斯优化,然后输出最优解和目标函数值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值