【大数据笔记08】Spark的弹性分布式数据集——RDD、Spark的运行流程

什么是RDD

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将数据缓存在内存中,后续的查询能够重用这些数据,这极大地提升了查询速度。
Dataset:一个数据集合,用于存放数据的。
Distributed:RDD中的数据是分布式存储的,可用于分布式计算。
Resilient:RDD中的数据可以存储在内存中或者磁盘中。

源码中对RDD的描述如下:
在这里插入图片描述
1) A list of partitions :一个分区(Partition)列表,数据集的基本组成单位。
对于RDD来说,每个分区都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分区个数, 如果没有指定,那么就会采用默认值。(比如:读取HDFS上数据文件产生的RDD分区数跟block的个数相等)

2)A function for computing each split :一个计算每个分区的函数。
Spark中RDD的计算是以分区为单位的,每个RDD都会实现compute函数以达到这个目的。

3)A list of dependencies on other RDDs:一个RDD会依赖于其他多个RDD,RDD之间的依赖关系。
RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

4)Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned):一个Partitioner,即RDD的分区函数(可选项)。
当前Spark中实现了两种类型的分区函数,一个是基于哈希的HashPartitioner,另外一 个是基于范围的RangePartitioner。只有对于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数决定了parent RDD Shuffle输出时的分区数量。

5)Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file):一个列表,存储每个Partition的优先位置(可选项)。
对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置(spark进行任务分配的时候尽可能选择那些存有数据的worker节点来进行任务计算)。

Spark的WordCount程序的流程图:

在这里插入图片描述
其中,蓝色箭头表示shuffle阶段,数据有可能的走向。

RDD的依赖关系、血统、缓存

在这里插入图片描述
窄依赖
窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用
总结:窄依赖我们形象的比喻为独生子女

宽依赖
宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition
总结:宽依赖我们形象的比喻为超生

Lineage(血统)
RDD只支持粗粒度转换,即只记录单个块上执行的单个操作。将创建RDD的一系列Lineage(即血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

比如,在之前的WordCount程序中,产生了5个rdd,并且每个rdd都有自己的分区。那么,Lineage(血统)就会记录下,每个rdd下的分区的数据被执行了什么操作,并且操作完的数据被分发到了下一个rdd的哪个分区。假如,rdd3的1号分区中的数据丢失,可以去找它来源的rdd的分区,并进行同样的操作,就能得到丢失的数据了。

RDD的缓存方式
RDD通过persist方法或cache方法可以将前面的计算结果缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。
在这里插入图片描述
通过查看源码发现cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。在这里插入图片描述
缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD的一系列转换,丢失的数据会被重算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。

Spark的工作流程

DAG(Directed Acyclic Graph)
有向无环图,原始的RDD通过一系列的转换就形成了DAG,根据RDD之间依赖关系的不同将DAG划分成不同的Stage(调度阶段)。对于窄依赖,partition的转换处理在一个Stage中完成计算。对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据。

在这里插入图片描述
各个RDD之间存在着依赖关系,这些依赖关系就形成有向无环图DAG,DAGScheduler对这些依赖关系形成的DAG进行Stage划分,划分的规则很简单,从后往前回溯,遇到窄依赖加入本stage,遇见宽依赖进行Stage切分。完成了Stage的划分。DAGScheduler基于每个Stage生成TaskSet,并将TaskSet提交给TaskScheduler。TaskScheduler 负责具体的task调度,最后在Worker节点上启动task。

DAGScheduler

  1. DAGScheduler对DAG有向无环图进行Stage划分。
  2. 记录哪个RDD或者 Stage输出被物化(缓存),通常在一个复杂的shuffle之后,通常物化一下(cache、persist),方便之后的计算。
  3. 重新提交shuffle输出丢失的stage(假如stage内部计算出错)给TaskScheduler
  4. 将 Taskset传给底层调度器
    a)– spark-cluster TaskScheduler
    b)– yarn-cluster YarnClusterScheduler
    c)– yarn-client YarnClientClusterScheduler

TaskScheduler
(1)为每一个TaskSet构建一个TaskSetManager 实例管理这个TaskSet 的生命周期
(2)数据本地性决定每个Task最佳位置
(3)提交 taskset( 一组task) 到集群运行并监控
(4)推测执行,碰到计算缓慢任务需要放到别的节点上重试
(5)重新提交Shuffle输出丢失的Stage给DAGScheduler

RDD的容错机制

CheckPoint

  1. Spark 在生产环境下经常会面临transformation的RDD非常多(例如一个Job中包含1万个RDD)或者具体transformation的RDD本身计算特别复杂或者耗时(例如计算时长超过1个小时),这个时候就要考虑对计算结果数据持久化保存;
  2. Spark是擅长多步骤迭代的,同时擅长基于Job的复用,这个时候如果能够对曾经计算的过程产生的数据进行复用,就可以极大的提升效率;
  3. 如果采用persist把数据放在内存中,虽然是快速的,但是也是最不可靠的;如果把数据放在磁盘上,也不是完全可靠的!例如磁盘会损坏,系统管理员可能清空磁盘。
  4. Checkpoint的产生就是为了相对而言更加可靠的持久化数据,在Checkpoint的时候可以指定把数据放在本地,并且是多副本的方式,但是在生产环境下是放在HDFS上,这就天然的借助了HDFS高容错、高可靠的特征来完成了最大化的可靠的持久化数据的方式;
    假如进行一个1万个算子操作,在9000个算子的时候persist,数据还是有可能丢失的,但是如果checkpoint,数据丢失的概率几乎为0。

CheckPoint的原理机制

  1. 当RDD使用cache机制从内存中读取数据,如果数据没有读到,会使用checkpoint机制读取数据。此时如果没有checkpoint机制,那么就需要找到父RDD重新计算数据了,因此checkpoint是个很重要的容错机制。
    checkpoint就是对于一个RDD chain(链)如果后面需要反复使用某些中间结果RDD,可能因为一些故障导致该中间数据丢失,那么就可以针对该RDD启动checkpoint机制,使用checkpoint首先需要调用sparkContextsetCheckpoint方法,设置一个容错文件系统目录,比如hdfs,然后对RDD调用checkpoint方法。之后在RDD所处的job运行结束后,会启动一个单独的job来将checkpoint过的数据写入之前设置的文件系统持久化,进行高可用。所以后面的计算在使用该RDD时,如果数据丢失了,但是还是可以从它的checkpoint中读取数据,不需要重新计算。
  2. persist或者cache与checkpoint的区别在于,前者持久化只是将数据保存在BlockManager中但是其lineage是不变的,但是后者checkpoint执行完后,rdd已经没有依赖RDD,只有一个checkpointRDD,checkpoint之后,RDD的lineage就改变了。persist或者cache持久化的数据丢失的可能性更大,因为可能磁盘或内存被清理,但是checkpoint的数据通常保存到hdfs上,放在了高容错文件系统。

Spark的运行架构(重点)

在这里插入图片描述

  1. 构建Spark Application的运行环境(启动SparkContext),SparkContext向资源管理器(可以是Standalone、Mesos或YARN)注册并申请运行Executor资源;
  2. 资源管理器分配Executor资源并启动Executor,Executor运行情况将随着心跳发送到资源管理器上;
  3. SparkContext构建成DAG图,将DAG图分解成Stage,并把Taskset发送给Task Scheduler。Executor向SparkContext申请Task,Task Scheduler将Task发放给Executor运行同时SparkContext将应用程序代码发放给Executor。
  4. Task在Executor上运行,运行完毕释放所有资源。

运行框架的特点

  • 每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行tasks。
  • Spark任务与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了。
  • 提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack里,因为Spark程序运行过程中SparkContext和Executor之间有大量的信息交换;如果想在远程集群中运行,最好使用RPC将SparkContext提交给集群,不要远离Worker运行SparkContext。
  • Task采用了数据本地性和推测执行的优化机制。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值