一、前述
Spark的资源调度是个很重要的模块,只要搞懂原理,才能具体明白Spark是怎么执行的,所以尤其重要。
自愿申请的话,本文分粗粒度和细粒度模式分别介绍。
二、具体
Spark资源调度流程图:
Spark资源调度和任务调度的流程:
1、启动集群后,Worker节点会向Master节点汇报资源情况,Master掌握了集群资源情况。
2、当Spark提交一个Application后,根据RDD之间的依赖关系将Application形成一个DAG有向无环图。任务提交后,Spark会在Driver端创建两个对象:DAGScheduler和TaskScheduler。
3、DAGScheduler是任务调度的高层调度器,是一个对象。DAGScheduler的主要作用就是将DAG根据RDD之间的宽窄依赖关系划分为一个个的Stage,然后将这些Stage以TaskSet的形式提交给TaskScheduler(TaskScheduler是任务调度的低层调度器,这里TaskSet其实就是一个集合,里面封装的就是一个个的task任务,也就是stage中的并行度task任务)
4、TaskSchedule会遍历TaskSet集合,拿到每个task后会将task发送到计算节点Executor中去执行(其实就是发送到Executor中的线程池ThreadPool去执行)。
5、ta