Spark资源调度和任务调度过程介绍

本文深入介绍了Spark的资源调度机制,从启动集群到Application执行的整个过程,包括DAGScheduler和TaskScheduler的角色,以及Task的执行、重试和推测执行策略。总结了资源申请模式的优缺点,并提供了配置推测执行的建议。
摘要由CSDN通过智能技术生成

一、前述

Spark的资源调度是个很重要的模块,只要搞懂原理,才能具体明白Spark是怎么执行的,所以尤其重要。

自愿申请的话,本文分粗粒度和细粒度模式分别介绍。

二、具体

Spark资源调度流程图:

Spark资源调度和任务调度的流程:
                 1、启动集群后,Worker节点会向Master节点汇报资源情况,Master掌握了集群资源情况。

              2、当Spark提交一个Application后,根据RDD之间的依赖关系将Application形成一个DAG有向无环图。任务提交后,Spark会在Driver端创建两个对象:DAGScheduler和TaskScheduler。

              3、DAGScheduler是任务调度的高层调度器,是一个对象。DAGScheduler的主要作用就是将DAG根据RDD之间的宽窄依赖关系划分为一个个的Stage,然后将这些Stage以TaskSet的形式提交给TaskScheduler(TaskScheduler是任务调度的低层调度器,这里TaskSet其实就是一个集合,里面封装的就是一个个的task任务,也就是stage中的并行度task任务)

             4、TaskSchedule会遍历TaskSet集合,拿到每个task后会将task发送到计算节点Executor中去执行(其实就是发送到Executor中的线程池ThreadPool去执行)。

             5、ta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值