【深度学习】如何将Voting和Stacking等应用到神经网络模型

本文介绍了如何将Voting和Stacking等集成学习方法应用于深度学习模型,包括网络快照集成法、多模型集成、投票策略、Stacking的详细过程,以及在RGB-D数据上的集成学习实验,强调了加权平均和多数表决法在提升模型性能中的作用。
摘要由CSDN通过智能技术生成

【深度学习】如何将Voting和Stacking等应用到神经网络模型

在这里插入图片描述

1 网络“快照”集成法(snapshot ensemble)
2 多模型集成
3 投票
4 Stacking:集成学习策略图解
5 多模态(RGB-D)——Ensemble Learning
6 Softmax:将输出转换为概率

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值