【机器学习】集成学习 (Ensemble Learning) (四) —— Stacking 与 Blending

本文深入探讨了集成学习中的堆叠法(Staking)与融合法(Blending)。Stacking利用不同弱学习器的输出训练元模型,强调异质弱学习器的组合,而Blending则通过Holdout集进行模型融合。文中还讨论了Stacking与神经网络的关系,以及两者之间的优缺点和适用场景。
摘要由CSDN通过智能技术生成


相关文章

【机器学习】集成学习 (Ensemble Learning) (一) —— 导引

【机器学习】集成学习 (Ensemble Learning) (二) —— Bagging 与 Random Forest

【机器学习】集成学习 (Ensemble Learning) (三) —— Boosting 与 Adaboost + GBDT


目录

2.3 堆叠法 (Stacking) 与 融合法 (Blending)

2.3.1 Stacking

2.3.2 Stacking 与 神经网络 NN

2.3.3 Blending


2.3 堆叠法 (Stacking) 与 融合法 (Blending)

2.3.1 Stacking

Stacking 学习几个不同的弱学习器,并通过训练一个元模型来组合这些弱模型的输出,作为最终的预测结果。

Stacking 与 Bagging、Boosting 相比,主要 差异 如下:

  1. Stacking 主要使用 异质弱学习器(不同模型),而 Bagging 和 Boosting 主要使用 同质弱学习器
  2. Stacking 训练一个 元模型 来组合基础模型,而 Bagging 和 Boosting 则 根据 确定性算法 组合弱学习器

因此,为构建 Stacking 模型,需定义至少两部分(通常是 2 层)模型

  1. 多个需要拟合的 弱学习器模型
  2. 一个用于组合各弱学习器模型的 元模型

例如,对于分类问题,可选 KNN、Logistic Regression、SVM 等作为弱分类器,并采用学习神经网络 NN 作为元模型。然后,神经网络将会把三个弱学习器的输出作为输入,并返回基于该输入的最终预测。所以,假设要拟合由 L 个弱学习器组成的 Stacking 集成模型,须遵循以下步骤:

  • 将训练数据分为两组;
  • 选择 L 个弱学习器,用它们拟合第一组数据;
  • 使 L 个学习器中的每个学习器对第二组数据中的观测数据进行预测;
  • 在第二组数据上拟合元模型,使用弱学习器做出的预测作为输入。

在前面的步骤中,将数据集一分为二,因为对用于训练弱学习器的数据的预测与元模型的训练 不相关。因此,将数据集分成两部分的一个 明显缺点 是:只有一半的数据用于训练基础模型,另一半数据用于训练元模型。

为克服这种限制,可使用某种 K 折交叉训练 方法(类似于 K 折交叉验证的做法)。这样所有的观测数据都可用来训练元模型:对于任意观测数据,弱学习器的预测都是通过在 K-1折数据(不包含已考虑的观测数据)上训练这些弱学习器的实例来完成的。换言之,它在 K-1 折数据上训练,在剩下 1 折数据上预测。迭代地重复改过程,就可得到对任 1 折观测数据的预测结果。这样一来,就可为数据集中的每个观测数据生成相关的预测,然后使用所有这些预测结果训练元模型。

Stacking 从数据集中训练出初级学习器,然后 ”生成“ 一个新的数据集用于训练次级学习器。由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。加之为防止过拟合,可采用 K 折交叉验证 求解。假设采用 5 折交叉验证,每个模型都要做满 5 次训练和预测,对于每一次:

  • 从 80% 的数据训练得到一个模型 ht,然后预测训练集剩下的 20%,同时也要预测测试集。
  • 每次有 20% 的训练数据被预测,5 次后正好每个训练样本都被预测过了。
  • 每次都要预测测试集,因此最后测试集被预测 5 次,最终结果取 5 次的平均。

一个示例

Stacking 算法

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值