线性回归与逻辑回归


线性回归与逻辑回归参考

一,机器学习

利用大量的数据样本,使得计算机通过不断的学习获得一个模型,用来对新的未知数据做预测。

  • 有监督学习(分类回归)
  • 无监督学习(聚类)
  • 强化学习

二,线性回归

  • 单变量情况
  • 多变量情况
    二维空间的直线,转化为高维空间的平面

损失函数

为凸函数,但多元情况下容易出现局部极值,求极值用梯度下降法

梯度下降法

①初始位置选取很重要
②不断迭代更新θ

  • 学习率
    学习率太大,会跳过最低点,可能不收敛
    学习率太小收敛速度过慢
  • 过拟合
    ①如果有很多的特征,或者模型很复杂,则假设函数曲线可能对训练样本拟合的非常好,学习能力太强了,但是丧失了一般性
    ②训练样本中肯定存在噪声点,如果全都学习的话肯定将噪声也学习进去
    过拟合是给参数的自由空间太大了,可以通过简单的方式让参数变化太快,而没有学习到底层的规律,模型抖动太大,很不稳定,对新数据没有泛化能力

正则化解决过拟合

正则化的作用:
①控制参数变化幅度,对变化大的参数惩罚
②限制参数搜索空间
添加正则化的损失函数:
在这里插入图片描述
m: 有m个样本
n: n个参数,对n个参数进行惩罚
λ: 对误差的惩罚程度,λ越大对误差的惩罚越大,容易出现过拟合,λ越小,对误差的惩罚越小,对误差的容忍度越大,泛化能力好。λ不宜过大

三,逻辑回归

监督学习,解决二分类问题
本质:在空间中找到一个决策边界来完成分类的决策
线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类
在这里插入图片描述

逻辑回归的损失函数

①线性回归的损失函数为平方损失函数,如果将其用于逻辑回归的损失函数,则其数学特性不好,有很多局部极小值,难以用梯度下降法求最优。
在这里插入图片描述
②Sigmoid 函数自身的性质

因为这是一个最简单的,可导的,0-1阶跃函数

sigmoid 函数连续,单调递增

sigmiod 函数关于(0,0.5) 中心对称

对sigmoid函数求导简单

逻辑回归损失函数:对数损失函数
在这里插入图片描述
解释:如果一个样本为正样本,那么我们希望将其预测为正样本的概率p越大越好,也就是决策函数的值越大越好,则logp越大越好,逻辑回归的决策函数值就是样本为正的概率;

如果一个样本为负样本,那么我们希望将其预测为负样本的概率越大越好,也就是(1-p)越大越好,即log(1-p)越大越好。
为什么要用log
样本集中有很多样本,要求其概率连乘,概率为(0,1)间的数,连乘越来越小,利用log变换将其变为连加,不会溢出,不会超出计算精度
在这里插入图片描述

逻辑回归实现多分类

多个分类器

  • 一对一
  • 一对多

LR逻辑回归和SVM的关系

1.LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题)
2.如果不考虑核函数,LR和SVM都是线性分类算法,也就是说他们的分类决策面都是线性的
3.都是监督学习算法,都是判别模型

区别:
1.本质上是loss function不同
在这里插入图片描述
逻辑回归方法基于概率理论,假设样本为1的概率可以用sigmoid函数来表示,然后通过极大似然估计的方法估计出参数的值;

支持向量机基于几何间隔最大化原理,认为存在最大几何间隔的分类面为最优分类面

2.支持向量机只考虑局部的边界线附近的点,而逻辑回归考虑全局(远离的点对边界线的确定也起作用)
3.在解决非线性问题时,支持向量机采用核函数的机制,而LR通常不采用核函数的方法
4.SVM的损失函数就自带正则
逻辑回归正则化与线性回归正则化参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值