以前听学长讲的字典树,但是除了当时刷的字典树的题后就没怎么碰到字典树的题目了。前两天刷题的时候看别人博客看到了01字典树,便好奇的学习了一下,总的来说01字典树在解决异或问题是十分的方便。
通常是给你一个数组,问你一段连续的异或和最大是多少,正常思路贪心dp啥的都会一头雾水,但是用01字典树就能很快的解决。
01字典树主要用于解决求异或最值的问题。
原理:
01字典树和普通的字典树原理类似,只不过把插入字符改成了插入二进制串的每一位(0或1)。
01字典树是按位插入和查询的。因为如果一个数,它的高位值较大,那么这个数的值较大。所以我们插入和查询时是从最高位开始进行的。
- 01字典树是一棵最多 32层的二叉树,其每个节点的两条边分别表示二进制的某一位的值为 0 还是为 1. 将某个路径上边的值连起来就得到一个二进制串。
- 节点个数为 1 的层(最高层)节点的边对应着二进制串的最高位。
- 节点值 val为 0时表示到当前节点为止不能形成一个数,否则 val[i]=数值。辅助数组val来记录原数值。
- 可通过贪心的策略来寻找与 x异或结果最大的数,即优先找和 x二进制的未处理的最高位值不同的边对应的点,这样保证结果最大。
模板:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int MAXN=100005
int n,m;
int trie[32*MAXN][2];
ll val[32*MAXN];//结点值
ll num[32*MAXN];//每个结点被访问的次数
int tot;
void insert(ll d)//往01字典树里插入d
{
int root=0;
for(int i=32;i>=0;i--)//最多32层
{
int id=(d>>i)&1;//获得这一个bit位的值
if(!trie[root][id]) trie[root][id]=++tot;
root=trie[root][id];
num[root]++;
}
val[root]=d;
}
void update(ll x,ll add)//更新插入或删除x后每个结点被访问的次数
{
int root=0;
for(int i=32;i>=0;i--)
{
int id=(x>>i)&1;
root=trie[root][id];
num[root]+=add;
}
}
ll query(ll d)//查询所有数中和d异或结果最大的数
{
int root=0;
for(int i=32;i>=0;i--)
{
int id=(d>>i)&1;
//利用贪心策略,优先寻找和当前位不同的数
if(trie[root][id^1]) root=trie[root][id^1];
else root=trie[root][id];
}
return val[root];
}
例题: