【数据结构】串(二)—— 朴素模式匹配算法

前言

字符串模式匹配:在主串中找到与模式串相同的子串,并返回其所在位置。

在数据结构中,主要的字符串模式匹配算法有两种:朴素模式匹配算法和KMP算法。

在这里插入图片描述

朴素模式匹配算法

假设主串⻓度为n,模式串⻓度为 m

朴素模式匹配算法:将主串中所有⻓度为 m 的⼦串依次与模式串对⽐,直到找到⼀个完全匹配的⼦串,或所有的⼦串都不匹配为⽌。

1. 朴素模式匹配算法过程

首先定义指针 i 与 j ,确认主串与模式串对应的位置下标。

在这里插入图片描述

匹配失败图解

在这里插入图片描述

在这里插入图片描述

若当前⼦串匹配失败,则主串指针 i 指向下⼀个⼦串的第⼀个位置,模式串指针 j 回到模式串的第⼀个位置

注:此时 i = i - j + 2 是指 i - j 表明在比较字符串最开始位置处的前一个位置,故需要加2. i - j 指示的位置如下图所示。

在这里插入图片描述

匹配成功图解

在这里插入图片描述

在这里插入图片描述

若 j > T.length,则当前⼦串匹配成功,返回当前⼦串第⼀个字符的位置 —— i - T.length

2. 算法代码

#define MAXLEN 255      //预定义最大串长为255
typedef struct {
    char ch[MAXLEN];    //每个分盘存储一个字符
    int length;         //串的实际长度
) SString;
int Index(SString S,SString T){
    int i=1,j=1;
    while( i<=s.length && j<= T.length){
        if(S.ch[i] == T.ch[j] ){
            ++i; ++j;//继续比较后继字符
        }
        else{
            i = i-j+2;
            j = 1;
        //指针后退重新开始匹配
        }
    }
    if(j>T.length)
        return i - T.length;
    else
        return 0;
}

3. 性能分析

设主串⻓度为 n,模式串⻓度为 m,(注:很多时候,n >> m)则:

  • 匹配失败最坏的情况,每个⼦串都要对⽐ m 个字符,共 n-m+1 个⼦串,复杂度 = O((n-m+1)m) = O(nm)

  • 匹配失败最好的情况,每个⼦串的第⼀个字符就匹配失败,共 n-m+1 个⼦串,复杂度 = O(n-m+1) = O(n)

  • 匹配成功最好的情况,第一个⼦串的就匹配成功,复杂度 = O(m)

4. 要点

  1. 主串共 n-m+1 个⼦串;
  2. 主串指针匹配失败更新时i = i-j+2
  3. 当 模式串指针 j >T.length时, 返回的位置为 i - T.length
### 实现朴素模式匹配算法的C语言版本 朴素模式匹配(Naive Pattern Matching)是一种简单的字符匹配算法,它通过逐一比较目标中的子与模式来查找匹配位置。以下是该算法的核心逻辑以及其实现: #### 核心原理 朴素模式匹配算法的工作方式如下: - 对于长度为 `m` 的模式和长度为 `n` 的目标,依次尝试将模式放置在目标的不同起始位置上。 - 如果发现不匹配,则移动到下一个可能的位置并重新开始比较。 时间复杂度通常为 O(n * m),其中 n 是目标的长度,m 是模式的长度[^1]。 #### C语言实现 下面是朴素模式匹配算法的一个标准实现: ```c #include <stdio.h> #include <string.h> void naivePatternMatching(const char* text, const char* pattern) { int n = strlen(text); // Length of the target string int m = strlen(pattern); // Length of the pattern string for (int i = 0; i <= n - m; i++) { // Iterate over possible starting positions int j; for (j = 0; j < m; j++) { // Compare characters one by one if (text[i + j] != pattern[j]) { break; // Mismatch found, exit inner loop } } if (j == m) { // If all characters matched printf("Pattern found at index %d\n", i); } } } int main() { const char text[] = "ABACADABRAC"; // Target string const char pattern[] = "ABA"; // Pattern to search for naivePatternMatching(text, pattern); // Call the function return 0; } ``` 上述代码实现了朴素模式匹配的功能,并打印出所有找到的匹配索引位置。 --- ### 解释与扩展 1. **函数参数说明** - 参数 `text` 表示目标字符。 - 参数 `pattern` 表示要匹配的模式字符。 2. **外层循环** 外层循环控制模式在整个目标上的滑动窗口起点。每次迭代都会检查一个新的潜在匹配位置。 3. **内层循环** 内层循环逐字符对比当前窗口内的子与模式的内容。如果发生任何不匹配的情况,则立即退出内层循环。 4. **性能分析** 虽然简单易懂,但此方法的时间效率较低,在最坏情况下需执行 \(O((n-m+1)m)\) 次操作。对于大规模数据集或者更复杂的场景,可以考虑其他高级算法如 KMP 或 Boyer-Moore 算法。 --- ### 结合概率模型的应用可能性 尽管朴素模式匹配本身并不涉及概率计算,但在某些特定应用场合下可结合贝叶斯分类器的思想进行改进。例如当处理模糊查询或带有噪声的数据时,可以通过估计条件概率 \(p(\text{match}|\text{text})\) 来增强鲁棒性[^2]。 然而需要注意的是,这种组合会显著增加程序设计难度及运行开销,因此仅适用于特殊需求环境下的优化方案[^3]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

何为xl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值