【数学】有理分式的拆解技巧

本文介绍了处理有理分式积分问题的多种技巧,包括真分式拆解、添项减项法、待定系数法、留数法,以及真假分式的判断与转换。重点讲解了高阶极点的处理方法和实例演示,适合个人学习和解决实际问题的技巧分享。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【数学】有理分式的拆解技巧

仅做个人学习总结使用
参考的文章:
https://www.jianshu.com/p/1f6025995502
https://zhuanlan.zhihu.com/p/69471608

相信大家都不会陌生,经常遇见含有这些分式的积分类型
现在说说有哪些技巧可以简单应付

一个真分式,分子的次数 < 分母的次数
我们把一个真分式拆解为几个小分式,通常第一步会先把分母进行因式分解,然后按照那个因式分裂为小分式

在这里插入图片描述

对于小分式,分子的次数 总会 比分母的次数少1次方deg(分子) = deg(分母) - 1
例如分母是二阶 a x 2 + b x + c ax^2+bx+c ax2+bx+c,则分子为 A x + B Ax+B Ax+B
若分母是一阶 a x + b ax+b ax+b,则分子为常数A

不过,对于高阶极点来说,小分式的个数 = 分母的因式个数
例如 ( x + 5 ) 3 (x + 5)^3 (x+5)3,因式为 ( x + 5 ) 3 (x + 5)^3 (x+5)3 ( x + 5 ) 2 (x + 5)^2 (x+5)2 ( x + 5 ) (x + 5) (x+5),共三个因式
$(x^2+4 )4,因式为(x2+4)4,(x2+4)3,(x2+4)2,(x^2+4),共四个因式

在这里插入图片描述

常用的方法无非都是那几种:

添项减项法:这个方法对 1 ( x + a ) ( x + b ) \frac{1}{(x+a)(x+b)} (x+a)(x+b)1 型有效

待定系数法:即小分式通分后,把分子与原式的分子恒等,从而解出对应系数

留数法:即通过消去零因式来解出系数,分母要求为线性(ax+b)型因式,可以是高阶极点,这个方法其实跟z变换类似

添项减项法 和 待定系数法:

在这里插入图片描述

在这里插入图片描述
留数法:

在这里插入图片描述

在这里插入图片描述

留数法对于一次因式,一阶极点的因式时最好用的
例如:

在这里插入图片描述

而待定系数法,则需要对联立多元方程有很好的运算技巧
通常对于二次或以上的因式最好用
例如:

在这里插入图片描述
下面是练习,你们可以试试:

在这里插入图片描述
如果分子的次数 ≥ 分母的次数,这是假分式,设法自然会有些改变

在这里插入图片描述
这个可依旧运用待定系数法:

在这里插入图片描述
或者多项式除法:

在这里插入图片描述

图5留数法第二道题解答有点错误,应该对A那个式子求导。希望作者更正下。☺☺☺

https://zhuanlan.zhihu.com/p/69471608

分解步骤总览:

  1. 判别真假分式.

  2. 真分式分解出待定式.

  3. 待定系数求解方法: 实根法(一次式), 复根法(二次式), 求导法(一次n重), 极限法(一、二次的二重)

  4. 判别真假分式

形如 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x)
的分式, 若分子指数等于或高于分母, 则要化为真分式.[1]

化简方法: 做多项式除法[2]

例如:

在这里插入图片描述
2. 真分式分解

[公式] 重一次因式

形如: P ( x ) ( A x + b ) k \frac{P(x)}{(Ax+b)^k} (Ax+b)kP(x)

k = 1 k = 1 k=1

在这里插入图片描述
其中 A i A_i Ai为待定系数.

k > 1 k > 1 k>1

在这里插入图片描述
例如:

在这里插入图片描述
A i , B i , C i A_i, B_i, C_i Ai,Bi,Ci 为待定系数.

k k k 二次因式

形如

P ( x ) ( a x 2 + b x + c ) k \frac{P(x)}{(ax^2+bx+c)^k} (ax2+bx+c)kP(x)

k = 1 k=1 k=1时,

在这里插入图片描述
k > 1 k>1 k>1时,

在这里插入图片描述
例如:

在这里插入图片描述

  1. 待定系数求解[3]

    无特征——反解方程法

将各项通分合并, 将分子与原式的分子做系数比对, 写出关于待定系数的方程, 进行求解

多个不同的一次式, 且无重因式——实根代入法

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

何为xl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值