股票模板实例

本文介绍了一个动量策略,选取过去60个交易日累计收益率最高的60只股票进行买入,策略基于沪深300成分股,与沪深300指数对比。策略涉及调仓频率、手续费、滑点设置,以及handle_data函数中的股票账户操作,包括获取历史数据、计算股票累积净值、调整持仓等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先上代码:

import pandas as pd
start='2014-11-01'
end='2018-01-01'
benchmark='HS300'
universe=DynamicUniverse('HS300')
refresh_rate=60   #此处未给出频率参数,默认是‘d’(天)
max_history_window=60
accounts={
    'fantasy_account':AccountConfig(account_type="security",capital_base=10000000,
                                     commission=Commission(buycost=0.001,sellcost=0.002,unit='perValue'),
                                    slippage=Slippage(value=0.0,unit='perValue'))
                                    }
def initialize(context):
     pass
                                   
def handle_data(context):
     account=context.get_account('fantasy_account')
     universe=context.get_universe(exclude_halt=True)
     history=context.history(universe,'closePrice',60)   #获取K线图等时间序列数据(获取60条历史K线图universe证券列表的前复权收盘价)
     momentum={'symbol':[],'c_ret':[]}   #字典初始化
     for stk in history.keys():  #对每只股票进行循环,用最近的前复权价格除以60个交易日之前的前复权价格,得到累计净值
            momentum['symbol'].append(stk)
            momentum['c_ret'].append(history[stk]['closePrice'][-1]/history[stk]['closePrice'][0])
     #按照过去60日收益率排序,并且选择前60只得股票作为买入候选
     momentum&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值