前言
杨氏双缝、夫琅禾费单缝是光学本章的两个重点.
教材: 物理学(第六版)下册
东南大学等七所工科院校 编
马文蔚 周雨青 解希顺 改编
杨氏双缝

x = { ± k d ′ d , 明 纹 ± d ′ d ( 2 k + 1 ) λ 2 , 暗 纹 x=\left\{ \begin{aligned} & \pm k\frac{d'}{d} , &明纹 \\ & \pm \frac{d'}{d} (2k+1) \frac{\lambda}{2} , & 暗纹 \end{aligned} \right. x=⎩⎪⎪⎨⎪⎪⎧±kdd′,±dd′(2k+1)2λ,明纹暗纹
相邻明纹或相邻暗纹中心间的距离
Δ
x
=
d
′
d
λ
\Delta x = \frac{d'}{d} \lambda
Δx=dd′λ
P173 问题11-3
将装置进行一下变动,屏幕上的干涉条纹将如何变化?
(1) 将钠黄光 (578~598nm)换成波长为632.8nm的氦氖激光
λ \lambda λ 变大, Δ x \Delta x Δx变大,条纹变稀疏。
(2) 将整个装置浸入水中
λ \lambda λ变小,变为 λ n \frac{\lambda}{n} nλ, n 为水的折射率,故 Δ x \Delta x Δx变小,条纹变密集。
(3) 将双缝( S 1 S_1 S1和 S 2 S_2 S2)的间距增大
d变大, Δ x \Delta x Δx变小,条纹变密集。
(4) 将屏幕向双缝屏靠近
d’ 变小, Δ x \Delta x Δx变小,条纹变密集。
(5) 在双缝之一的后面放一折射率为n的透明薄膜
举个例子,在 S 1 S_1 S1 加了一块薄膜,则上面的孔光线所走的光程变大,因此条纹向上移动,而条纹间隙不变。
夫琅禾费单缝衍射

b s i n θ = { ± 2 k λ 2 , 暗 纹 ± ( 2 k + 1 ) λ 2 , 明 纹 bsin\theta =\left\{ \begin{aligned} & \pm 2k \frac{\lambda}{2} , &暗纹 \\ & \pm (2k+1)\frac{\lambda}{2} , & 明纹 \end{aligned} \right. bsinθ=⎩⎪⎪⎨⎪⎪⎧±2k2λ,±(2k+1)2λ,暗纹明纹
第一级暗纹距离中心O的距离
x
1
=
f
t
a
n
θ
1
=
λ
b
f
x_1 = f tan ~\theta_1 = \frac{\lambda}{b} f
x1=ftan θ1=bλf
所以中央明纹的宽度为
Δ
x
0
=
2
x
1
=
2
λ
f
b
\Delta x_0 = 2x_1 = \frac{2\lambda f}{b}
Δx0=2x1=b2λf
其他任意两条相邻暗条纹的距离为:
Δ
x
=
[
(
k
+
1
)
λ
b
−
k
λ
b
]
f
=
λ
f
b
\Delta x=[\frac{(k+1)\lambda}{b}-\frac{k\lambda}{b}]f = \frac{\lambda f}{b}
Δx=[b(k+1)λ−bkλ]f=bλf
P175 问题11-16
在单缝衍射中,若作如下一些情况的变动时,屏幕上的衍射条纹将如何变化?
(1) 用钠黄光代替波长为632.8nm的氦氖激光
λ \lambda λ 变小, Δ x \Delta x Δx变小,条纹变密集。
(2) 将整个装置浸入水中,使缝宽 b 不变,而将屏幕右移至新装置的焦平面上
λ \lambda λ变小,变为 λ n \frac{\lambda}{n} nλ, n 为水的折射率,故 Δ x \Delta x Δx变小,条纹变密集。
(3) 将单缝往上作小位移
不变。(注意: 透镜不会引起额外的光程差
(4) 将透镜向上作小位移
向上平移,但衍射光强分布不变。 (最亮光斑中心一直在透镜的中轴上