光的衍射

0. 相关概念

光的衍射现象:光在传播过程中遇到尺寸比光的波长大得不多的障碍物时,它就不再遵循直线传播的规律,而会传到障碍物的阴影区并形成明暗变化的光强分布。

菲涅耳衍射:光源S或显示衍射图样的屏P,与衍射孔R之间的距离是有限的。

夫琅禾费衍射:光源和屏移到无穷远。

1. 常见衍射现象

(1) 菲涅耳衍射

待补充

(2) 夫琅禾费衍射

① 夫琅禾费单缝衍射

在这里插入图片描述

(1)第 k 级暗纹在屏上距中心O的距离
x = k   λ f b , k = 1 , 2 , 3 ⋅ ⋅ ⋅ x = k~\frac{\lambda f}{b} ,k = 1,2,3··· x=k bλf,k=1,2,3
对应的半波带数: 2 k 2k 2k

(2)第 k 级明纹在屏上距中心O的距离
x = ( k + 1 2 )   λ f b , k = 1 , 2 , 3 ⋅ ⋅ ⋅ x = (k+\frac{1}{2}) ~ \frac{\lambda f}{b} ,k = 1,2,3··· x=(k+21) bλf,k=1,2,3

对应的半波带数: 2 k + 1 2k+1 2k+1

暗纹和明纹都是从第1级开始,第0级是中央明纹。

(3)两相邻暗纹或明纹的距离
△ x = λ f b \triangle x = \frac{\lambda f}{b} x=bλf

当单缝宽度很小时,间距很大,图样很宽
当单缝宽度很大时,间距很小,图样很窄,直至看作一条亮纹

② 夫琅禾费圆孔衍射

在这里插入图片描述
(1)艾里斑对透镜光心的张角
2 θ = d f = 2.44 λ D 2\theta = \frac{d}{f} = 2.44\frac{λ}{D} 2θ=fd=2.44Dλ

d:艾里斑的直径
f:透视镜的焦距
D:圆孔直径
λ:单色光波长
2θ:艾里斑对透镜光心的张角。弧度制

(2)可识别物体对透镜的最小张角
θ 0 = 1.22 λ D \theta_0 = \frac{1.22 \lambda}{D} θ0=D1.22λ

2. 衍射光栅

(1) 透射光栅

光栅常量【d】
d = b + b ′ d= b + b' d=b+b

b:透光的宽度。
b’:不透光的宽度。

光栅方程
d s i n   θ = ± k λ , k = 0 , 1 , 2 … d sin~\theta = \pm k\lambda,k=0,1,2… dsin θ=±kλk=0,1,2

± \pm ±:左右两侧。
θ \theta θ:第k级明纹的衍射角。
k:第k级明条纹。特殊的,k =0时叫做中央明纹

方程只适用于光线垂直照射光栅时的情况。

d λ \frac{d}{\lambda} λd:能产生的最高级数

(2) 反射光栅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值