在Spark中创建RDD的创建方式可以分为三种:从集合中创建RDD;从外部存储创建RDD;从其他RDD创建。
创建RDD之前要先创建spark上下文对象:
val conf = new SparkConf().setMaster("local").setAppName("WorldCount")
val sc = new SparkContent(conf)
(1)从内存中创建
①使用parallelize()从集合创建
val rdd = sc.parallelize(Array(1,2,3,4,5,6,7,8))
②使用makeRDD()从集合创建
val rdd = sc.makeRDD(Array(1,2,3,4,5,6,7,8))
再看看他们的底层源码:
可以看到它们底层源码都是两个参数,那为什么上面只传一个参数也行呢?另一个参数有什么用呢?其实它们的第二个参数都是设定分区数的,因为RDD是可分区的,在创建RDD的时候可以传入参数让RDD固定分多少个区。但是如果你不传的话也有默认值,如果不写就用默认的参数。先来看makeRDD()的默认值,最底层的源码如下:
override def defaultParallelism(): Int = {
conf.getInt("spark.default.parallelism", math.max(totalCoreCount.get(), 2))
}
它的分区数首选在spark中配置的spark.default.parallelism参数,由于我用的是maven仓库,所以没有默认值,所以它会用后面的代码,在totalCoreCount.get()和2之间选出最大的。那么totalCoreCount.get又是什么呢?这就涉及到创建spark上下文对象时候设定的,默认是值本机cpu核数。parallelize()的和makeRDD是一样的。
(2)从磁盘中创建
val lines: RDD[String] = sc.textFile("C:\\Users\\ASUS\\IdeaProjects\\Spark\\src\\main\\resources\\input.txt")
从磁盘中创建RDD就是读取磁盘的数据然后创建RDD,这个方法也可以在textFile()中指定RDD的分区数,其创建RDD的源码如下:
/**
* Read a text file from HDFS, a local file system (available on all nodes), or any
* Hadoop-supported file system URI, and return it as an RDD of Strings.
*/
def textFile(
path: String,
minPartitions: Int = defaultMinPartitions): RDD[String] = withScope {
assertNotStopped()
hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
minPartitions).map(pair => pair._2.toString).setName(path)
}
可以看到,它是在defaultParallelism和2之间取最小的,defaultParallelism和上面的在内存中创建那个值是一样的,我这里也是cpu核数,所以默认会分成两个RDD。