
对抗性攻击
文章平均质量分 92
今我来思雨霏霏_JYF
这个作者很懒,什么都没留下…
展开
-
Attacking Fake News Detectors via Manipulating News Social Engagement(2023 WWW)
在年轻一代中,获取新闻的主要来源之一是社交媒体。随着新闻在各种社交媒体平台上日益流行,虚假信息和毫无根据的言论的传播也随之激增。随着提出了各种基于文本和社交背景的虚假新闻检测器,最近的研究开始关注虚假新闻检测器的漏洞。在本文中,我们提出了第一个针对基于图神经网络(GNN)的假新闻检测器的对抗性攻击框架,以探讨其鲁棒性。具体而言,我们利用多智能体强化学习(MARL)框架来模拟社交媒体上欺诈者的对抗行为。研究表明,在现实世界的环境中,欺诈者相互协作,共享不同的新闻,以逃避虚假新闻检测器的检测。原创 2023-11-29 15:10:47 · 367 阅读 · 0 评论 -
Adversarial Attack and Defense on Graph Data: A Survey(2022 IEEE Trans)
深度神经网络(DNN)已广泛应用于各种应用,包括图像分类、文本生成、音频识别和图数据分析。然而,最近的研究表明 DNN 很容易受到对抗性攻击。尽管在图像和自然语言处理等领域有一些关于对抗性攻击和防御策略的工作,但由于其表示结构,将学到的知识直接转移到图数据仍然很困难。鉴于图分析的重要性,过去几年越来越多的研究试图分析机器学习模型在图数据上的鲁棒性。然而,考虑图数据上的对抗行为的现有研究通常侧重于具有某些假设的特定类型的攻击。此外,每项工作都提出了自己的数学公式,这使得不同方法之间的比较变得困难。原创 2023-11-27 19:22:57 · 433 阅读 · 0 评论 -
Adversarial Attack on Graph Structured Data(2018 PMLR)
基于图结构的深度学习已经在各种应用中显示出令人兴奋的结果。然而,与图像或文本对抗攻击和防御的大量研究工作相比,此类模型的鲁棒性却很少受到关注。在本文中,我们重点关注通过修改数据组合结构来欺骗深度学习模型的对抗性攻击。我们首先提出一种基于强化学习的攻击方法,该方法学习可泛化的攻击策略,同时只需要来自目标分类器的预测标签。在额外的预测置信度或梯度可用的情况下,我们进一步提出基于遗传算法和梯度下降的攻击方法。我们使用合成数据和真实数据来表明,在图级和节点级分类任务中,一系列图神经网络模型很容易受到这些攻击。原创 2023-11-26 22:48:55 · 476 阅读 · 0 评论 -
Adversarial attack on community detection by hiding individuals(2020 CCF A类会议WWW)
Adversarial attack on community detection by hiding individuals----《通过隐藏成员进行社区检测的对抗性攻击》 社区检测旨在将图划分成 KKK 个不相交的子图。摘要 已经证明,对抗图(即添加了难以察觉的扰动的图)可能会导致深度图模型在节点/图分类任务上失败。在本文中,我们将对抗图扩展到更困难的社区检测问题上。我们专注于黑盒攻击,并旨在将有针对性的个体隐藏在深度图社区检测模型的检测之外。这在现实世界的场景中有许多应用,例如在社原创 2023-11-25 11:47:28 · 409 阅读 · 0 评论 -
Universal adversarial perturbations(2017 CVPR)
给定最先进的深度神经网络分类器,我们证明了存在一个通用的(与图像无关的)且非常小的扰动向量,该向量会导致自然图像以高概率被错误分类。我们提出了一种用于计算普遍扰动的系统算法,并表明最先进的深度神经网络非常容易受到这种扰动的影响,尽管人眼几乎无法察觉。我们进一步对这些普遍的扰动进行了实证分析,并特别表明它们在神经网络中具有很好的泛化性。普遍扰动的存在揭示了分类器高维决策边界之间的重要几何相关性。它进一步概述了输入空间中存在单一方向的潜在安全漏洞,对手可能会利用这些方向来破坏大多数自然图像的分类器。原创 2023-11-20 17:00:36 · 471 阅读 · 0 评论 -
Adversarially Robust Neural Architecture Search for Graph Neural Networks(2023CVPR)
图神经网络(GNN)在关系数据建模方面取得了巨大成功。尽管如此,它们仍然容易受到对抗性攻击,这对于将 GNN 应用到风险敏感领域来说是巨大的威胁。现有的防御方法既不能保证面对新数据/任务或对抗性攻击的性能,也不能提供从架构角度理解 GNN 鲁棒性的见解。神经架构搜索(NAS)有望通过自动化GNN架构设计来解决这个问题。然而,当前的图 NAS 方法缺乏稳健的设计,并且容易受到对抗性攻击。为了应对这些挑战,我们提出了一种新颖的GNN 鲁棒神经架构搜索框架(G-RNA)。原创 2023-11-19 17:24:30 · 357 阅读 · 0 评论 -
Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies(2020)
深度神经网络(DNN)在各种任务中都取得了显着的性能。然而,最近的研究表明,DNN 很容易被输入的小扰动所欺骗,称为对抗性攻击。作为 DNN 对图的扩展,图神经网络(GNN)已被证明继承了该漏洞。对手可以通过修改图结构(例如操纵一些边)来误导 GNN 给出错误的预测。这一漏洞引起了人们对在安全关键型应用中采用 GNN 的极大关注,并且近年来吸引了越来越多的研究关注。因此,有必要且及时地全面概述现有的图对抗攻击及其对策。在本次调查中,我们对现有的攻击和防御进行了分类,并回顾了相应的最先进方法。原创 2023-11-18 20:33:13 · 361 阅读 · 0 评论 -
Adversarial Attacks on Neural Networks for Graph Data(2018 ACM SIGKDD)
基于图的深度学习模型在节点分类任务上取得了较好的性能。尽管已经有了很多成果,但目前还没有研究它们对敌对攻击的鲁棒性。然而,在可能使用它们的领域,例如在网络上,对手很常见。图的深度学习模型容易被愚弄吗?在这项工作中,我们介绍了对属性图的对抗性攻击的第一个研究,特别关注利用图卷积思想的模型。除了测试时的攻击外,我们还解决了更具挑战性的中毒/致病攻击,这些攻击集中在机器学习模型的训练阶段。因此,在考虑实例之间的依赖关系的情况下,我们针对节点的特征和图结构产生对抗扰动。原创 2023-11-18 11:30:40 · 486 阅读 · 0 评论 -
DeepFool: a simple and accurate method to fool deep neural networks(2016 CVPR)
最先进的深度神经网络已经在许多图像分类任务上取得了令人印象深刻的结果。然而,这些相同的架构已被证明对于图像的小而良好的扰动是不稳定的。尽管这种现象很重要,但尚未提出有效的方法来准确计算最先进的深度分类器对大规模数据集上的此类扰动的鲁棒性。在本文中,我们填补了这一空白,并提出了 DeepFool 算法来有效计算欺骗深度网络的扰动,从而可靠地量化这些分类器的鲁棒性。大量的实验结果表明,我们的方法在计算对抗性扰动和使分类器更加鲁棒的任务中优于最新的方法。原创 2023-11-13 20:06:30 · 374 阅读 · 0 评论 -
Adversarial Training Methods for Deep Learning: A Systematic Review(2022)
通过快速梯度符号法(FGSM)、投影梯度下降法(PGD)和其他攻击算法,深度神经网络暴露在对抗攻击的风险下。对抗性训练是用来防御对抗性攻击威胁的方法之一。它是一种训练模式,利用替代目标函数为对抗数据和干净数据提供模型泛化。在这篇系统综述中,我们特别关注对抗性训练作为提高机器学习模型的防御能力和鲁棒性的方法。具体来说,我们专注于通过对抗样本生成方法来获取对抗样本的可访问性。本系统综述的目的是调查最先进的对抗训练和稳健的优化方法,以确定该应用领域的研究差距。本综述的结果表明,对抗性训练方法和鲁棒优化存在局限性。原创 2023-11-12 17:58:38 · 1835 阅读 · 0 评论 -
Interactive Analysis of CNN Robustness(2021)
虽然卷积神经网络(CNN)作为图像相关任务的最先进模型被广泛采用,但它们的预测往往对小的输入扰动高度敏感,而人类视觉对此具有鲁棒性。本文介绍了 Pertuber,这是一个基于 Web 的应用程序,允许用户即时探索当 3D 输入场景受到交互式扰动时 CNN 激活和预测如何演变。Pertuber 提供了各种各样的场景修改,例如摄像机控制、照明和阴影效果、背景修改、对象变形以及对抗性攻击,以方便发现潜在的漏洞。可以直接比较微调的模型版本,以定性评估其稳健性。原创 2023-11-11 16:34:07 · 475 阅读 · 0 评论 -
It Is All About Data: A Survey on the Efects of Data on Adversarial Robustness(2023 ACM CS)
对抗性示例是攻击者故意设计的机器学习模型的输入,目的是迷惑模型,使其犯错误。这些例子对基于机器学习的系统的适用性构成了严重威胁,特别是在生命和安全关键领域。为了解决这个问题,对抗性鲁棒性领域研究了对抗性攻击背后的机制以及针对这些攻击的防御。这篇综述回顾了特定的文献子集,这些文献集中研究了在规避攻击下模型鲁棒性背景下训练数据的属性。首先总结了导致对抗性漏洞的数据的主要特性。然后讨论了通过增强数据表示和学习过程来提高对抗性鲁棒性的指导方针和技术,以及在给定特定数据的情况下估计鲁棒性保证的技术。原创 2023-11-08 17:18:25 · 280 阅读 · 0 评论 -
Explaining and harnessing adversarial examples(2014)
包括神经网络在内的一些机器学习模型始终会被对抗样本误导,这些对抗样本通过注入小但故意破坏的扰动而形成,这样的对抗样本会导致模型以高置信度输出错误答案。早期的工作尝试用非线性特征和过拟合去解释这种现象。相反,我们认为神经网络易受对抗性扰动影响的主要原因是它们的线性本质。基于这个假设,我们提出了简单快速的生成对抗样本的方法即快速梯度符号法(Fast Gradient Sign Method),使用这种方法为对抗训练提供示例,并减少了在MNIST数据集上训练的模型的测试集误差。对抗性例子可以解释为高维点积的属性。原创 2023-11-01 21:00:14 · 331 阅读 · 0 评论 -
Adversarial attacks and defenses on AI in medical imaging informatics: A survey(2022)
近年来,医学图像显着改善并促进了多种任务的诊断,包括肺部疾病分类、结节检测、脑肿瘤分割和身体器官识别。另一方面,机器学习(ML)技术,特别是深度学习网络(DNN)在各个领域的卓越性能导致了深度学习方法在医学图像分类和分割中的应用。由于涉及安全和重要问题,医疗保健系统被认为非常具有挑战性,其性能准确性非常重要。之前的研究表明,人们对医疗 DNN 及其易受对抗性攻击的脆弱性一直存在疑虑。尽管已经提出了各种防御方法,但医学深度学习方法的应用仍然存在担忧。原创 2023-10-26 20:41:30 · 609 阅读 · 3 评论