一、csv文件的创建
直接使用open(path+文件名,**)函数,如果路径path中有该文件名的文件,则直接打开使用,否则直接创建然后在打开供我们操作使用。废话不多说,直接上代码
import csv
##新建一个csv文件
fp=open("L:\\pycharm\\pycharm workingplace\\data_analysis\\pandas\\panda_read\\lianxi1.csv","w",newline='')
# fp1=open("L:\\pycharm\\pycharm workingplace\\data_analysis\\pandas\\panda_read\\lianxi11.csv","w",newline='')
##新建一个csv文件
writer=csv.writer(fp)
writer.writerow(("id","name","grade"))
writer.writerow(("1","lucy","78"))
writer.writerow(("2","petter","56"))
writer.writerow(("3","Bob","90"))
fp.close()
# fp1.close()
运行代码前的路径下文件,只有一个.py文件
将上述代码运行后结果:
二、csv文件读取
在实际生活中,常用的有read_csv和read_table函数
read_csv 从文件中加载带有分隔符的数据,默认分隔符为逗号“,”
read_table 从文件中加载带有分隔符的数据,默认分隔符为制表位
*在读取csv文件时,如果文件路径有中文,则需要加上open函数才能打开,否则会报错
1、 read_csv
#import csv
import pandas as pd
fp2=pd.read_csv("L:\\pycharm\\pycharm workingplace\\data_analysis\\pandas\\panda_read\\lianxi11.csv")
print(fp2)
含有中文字符的文件未使用open函数打开报错:
使用open函数再一次打开,便不会在报错了:
2、read_table
#import csv
import pandas as pd
fp4=pd.read_table("L:\\pycharm\\pycharm workingplace\\data_analysis\\pandas\\panda_read\\lianxi11.csv",sep=",")
print(fp4)
在csv_table中,有一个“sep=”可以定义,我们可以定义我们需要的分隔符,比如?、。!!!!等等
import csv
import pandas as pd
fp5=open("L:\\pycharm\\pycharm workingplace\\data_analysis\\pandas\\panda_read\\lianxi111.csv","w",newline='')
##新建一个csv文件
writer=csv.writer(fp5)
writer.writerow(("id","?","name","?","grade"))
writer.writerow(("1","?","lucy","?","78"))
writer.writerow(("2","?","petter","?","56"))
writer.writerow(("3","?","Bob","?","90"))
fp5.close()
fp5=pd.read_table("L:\\pycharm\\pycharm workingplace\\data_analysis\\pandas\\panda_read\\lianxi111.csv")
print("文件5结果如下:fp5")
print(fp5)
###此时此刻fp5中数据的分隔符并不是“,”了,而是我们自己定义的一个“?”
###如果还是使用默认的“,”来读取的话,便会把我们自己设置的分隔符“?”也读取出来,没有到达我们想要的结果,所以,这便是“sep=”存在的意义
fp6=pd.read_table("L:\\pycharm\\pycharm workingplace\\data_analysis\\pandas\\panda_read\\lianxi111.csv",sep="?")
print("文件6结果如下:fp6")
print(fp6)