【论文翻译】Deep Learning

Deep Learning

Yann LeCun∗ Yoshua Bengio∗ Geoffrey Hinton
**

深度学习

**
Yann LeCun∗ Yoshua Bengio∗ Geoffrey Hinton
Abstract
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
摘要
深度学习允许由多个处理层组成的计算模型学习具有多个抽象级别的数据表示。这些方法极大地改善了语音识别,视觉对象识别,对象检测以及以及药物发现和基因组学等领域的研究。 深度学习通过使用反向传播算法来指出机器应该如何改变其用于从前一层的表示中计算每一层表示的内部参数,从而发现大型数据集中的复杂结构。 深层卷积网络在处理图像,视频,语音和音频方面带来了突破,而递归网络对于连续的数据例如文本和语音有很好的性能。
正文
Machine-learning technology powers many aspects of modern society: from web searches to content filtering on social networks to recommendations on e-commerce websites, and it is increasingly present in consumer products such as cameras and smartphones. Machine-learning systems are used to identify objects in images, transcribe speech into text, match news items, posts or products with users’ interests, and select relevant results of search. Increasingly, these applications make use of a class of techniques called deep learning.
机器学习技术为现代社会的许多方面提供了动力:从网络搜索到社交网络上的内容过滤,再到电子商务网站上的推荐,它越来越多地出现在相机和智能手机等消费品中。机器学习系统用于识别图像中的对象,将语音转录成文本,将新闻条目、帖子或产品与用户的兴趣相匹配,并选择相关的搜索结果。这些应用程序越来越多地使用一种称为深度学习的技术。
Conventional machine-learning techniques were limited in their ability to process natural data in their raw form. For decades, constructing a pattern-recognition or machine-learning system required careful engineering and considerable domain expertise to design a feature extractor that transformed the raw data (such as the pixel values of an image) into a suitable internal representation or feature vector from which the learning subsystem, often a classifier, could detect or classify patterns in the input.
传统的机器学习技术在处理原始格式的自然数据方面的能力受到限制。 几十年来,构建模式识别或机器学习系统需要认真的工程设计和相当多的领域专业知识,才能设计特征提取器,以将原始数据(例如图像的像素值)转换为合适的内部表示或特征向量, 学习子系统(通常是分类器)可以检测或分类。
Representation learning is a set of methods that allows a machine to be fed with raw data and to automatically discover the representations needed for detection or classification. Deep-learning methods are representation-learning methods with multiple levels of representation, obtained by composing simple but non-linear modules that each transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level. With the composition of enough such transformations, very complex functions can be learned. For classification tasks, higher layers of representation amplify aspects of the input that are important for discrimination and suppress irrelevant variations. An image, for example, comes in the form of an array of pixel values, and the learned features in the first layer of representation typically represent the presence or absence of edges at particular orientations and locations in the image. The second layer typically detects motifs by spotting particular arrangements of edges, regardless of small variations in the edge positions. The third layer may assemble motifs into larger combinations that correspond to parts of familiar objects, and subsequent layers would detect objects as combinations of these parts. The key aspect of deep learning is that these layers of features are not designed by human engineers: they are learned from data using a general-purpose learning procedure.
表示学习是一组方法,这些方法允许向机器提供原始数据并自动发现检测或分类所需的表示。 深度学习方法是具有表示形式的多层次的表示学习方法,它是通过组合简单但非线性的模块而获得的,每个模块都将一个级别(从原始输入开始)的表示形式转换为更高,更抽象的级别的表示形式 。 有了足够多的此类转换,就可以学习非常复杂的功能。 对于分类任务,较高的表示层会放大输入中对区分非常重要的方面,并抑制不相关的变化。 例如,图像以像素值阵列的形式出现,并且在表示的第一层中学习的特征通常表示图像中特定方向和位置上是否存在边缘。 第二层通常通过发现边缘的特定布置来检测图案,而与边缘位置的微小变化无关。 第三层可以将图案组装成与熟悉的对象的各个部分相对应的较大组合,并且随后的层将对象检测为这些部分的组合。 深度学习的关键方面是这些层的功能不是由人类工程师设计的:它们是使用通用学习过程从数据中学习的。
Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years. It has turned out to be very good at discovering intricate structures in high-dimensional data and is therefore applicable to many domains of science, business and government. In addition to beating records in image recognition and speech recognition, it has beaten other machine-learning techniques at predicting the activity of potential drug molecules, analysing particle accelerator data, reconstructing brain circuits, and predicting the effects of mutations in non-coding DNA on gene expression and disease. Perhaps more surprisingly, deep learning has produced extremely promising results for various tasks in natural language understanding, particularly topic classification, sentiment analysis, question answering and language translation.
深度学习在解决多年来抵制人工智能界快速发展问题上取得了重大进展。事实证明,它非常善于发现高维度数据中复杂的结构,因此适用于科学、商业和政府的许多领域。除了在图像识别和语音识别方面取得了新记录外,它还在预测潜在药物分子的活性、分析粒子加速器数据、重建脑回路、以及预测非编码DNA突变对基因表达和疾病的影响等方面击败了其他机器学习技术。更令人惊讶的是,深度学习已经为自然语言中理解各种任务,特别是话题分类、情感分析、问题回答和语言翻译等方面带来了极大的成果。
We think that deep learning will have many more successes in the near future because it requires very little engineering by hand, so it can easily take advantage of increases in the amount of available computation and data. New learning algorithms and architectures that are currently being developed for deep neural networks will only accelerate this progress.
我们认为,在不久的将来,深度学习将取得更多的成功,因为它只需要很少的手工工程,因此它可以很容易地利用可用计算量和数据量的增加。目前正在为深层神经网络开发的新的学习算法和结构只会加速这一进展。

Supervised learning

监督学习

The most common form of machine learning, deep or not, is supervised learning. Imagine that we want to build a system that can classify images as containing, say, a house, a car, a person or a pet. We first collect a large data set of images of houses, cars, people and pets, each labelled with its category. During training, the machine is shown an image and produces an output in the form of a vector of scores, one for each category.We want the desired category to have the highest score of all categories, but this is unlikely to happen before training. We compute an objective function that measures the error (or distance) between the output scores and the desired pattern of scores. The machine then modifies its internal adjustable parameters to reduce this error. These adjustable parameters, often called weights, are real numbers that can be seen as ‘knobs’ that define the input–output function of the machine. In a typical deep-learning system, there may be hundreds of millions of these adjustable weights, and hundreds of millions of labelled examples with which to train the machine.
最常见的机器学习的形式,就是监督学习,不管其是否是深度的。 想象一下,我们想建立一个可以将图像分类为包含房屋,汽车,人或宠物的系统。 我们首先收集大量的房屋,汽车,人和宠物的图像数据集,每个图像均标有类别。 在训练过程中,机器会显示一张图像并以分数矢量的形式产生输出,每个类别一个。我们希望所需的类别在所有类别中具有最高分数,但这不太可能在训练之前发生。 。我们计算一个目标函数,用来衡量输出分数与所期望模式之间的误差或距离。然后,机器会修改其内部的可调整的参数来减少这个误差。这些可调参数,通常被称为权重,是实数,可以看作是定义机器的输入输出函数的 “旋钮”。在一个典型的深度学习系统中,可能会有数以亿计的这些可调节权重和标签化例子来训练这些机器。
To properly adjust the weight vector, the learning algorithm computes a gradient vector that, for each weight, indicates by what amount the error would increase or decrease if the weight were increased by a tiny amount. The weight vector is then adjusted in the opposite direction to the gradient vector.
为了正确地调整权重向量,学习算法计算一个梯度向量,对于每个权重,该向量指示如果权重稍微增加一点,误差会增加或减少多少。 然后沿与梯度向量相反的方向调整权重向量。
The objective function, averaged over all the training examples, can be seen as a kind of hilly landscape in the high-dimensional space of weight values. The negative gradient vector indicates the direction of steepest descent in this landscape, taking it closer to a minimum, where the output error is low on average.
在所有训练示例中平均的目标函数可以看作是权重值高维空间中的一种丘陵景观。 负梯度矢量指示此景观中最陡下降的方向,使其更接近最小值,其中输出误差平均较低。

In practice, most practitioners use a procedure called stochastic gradient descent (SGD). This consists of showing the input vector for a few examples, computing the outputs and the errors, computing the average gradient for those examples, and adjusting the weights accordingly. The process is repeated for many small sets of examples from the training set until the average of the objective function stops decreasing. It is called stochastic because each small set of examples gives a noisy estimate of the average gradient over all examples. This simple procedure usually finds a good set of weights surprisingly quickly when compared with far more elaborate optimization techniques18. After training, the performance of the system is measured on a different set of examples called a test set. This serves to test the generalization ability of the machine — its ability to produce sensible answers on new inputs that it has never seen during training.
在实践中,大多数从业者使用称为随机梯度下降 (SGD) 的过程。这包括显示几个示例的输入向量、计算输出和误差、计算这些示例的平均梯度以及相应地调整权重。对于训练集的许多小示例,此过程重复,直到目标函数的平均值停止下降。它被称作随机,是因为每一个小的样本集对于全体样本平均梯度的估计来说都会产生噪声。相较于一些精细的优化方法,这个简单的过程往往会很快地找到一组好的权重。在训练完成后,系统的性能将在一组称为测试集的不同示例上进行测量。这用于测试机器的泛化能力-机器在训练期间从未见过的新输入上产生明智答案的能力。
Many of the current practical applications of machine learning use linear classifiers on top of hand-engineered features. A two-class linear classifier computes a weighted sum of the feature vector components. If the weighted sum is above a threshold, the input is classified as belonging to a particular category.
许多当前实际应用中的机器学习在人工提取的特证基础上使用线性分类器进行分类,一个二分类的线性分类器会计算特征向量各元素的加权和,若其高于阈值,那么输入就会被分类为一个特定的类别。
Since the 1960s we have known that linear classifiers can only carve their input space into very simple regions, namely half-spaces separated by a hyperplane. But problems such as image and speech recognition require the input–output function to be insensitive to irrelevant variations of the input, such as variations in position, orientation or illumination of an object, or variations in the pitch or accent of speech, while being very sensitive to particular minute variations (for example, the difference between a white wolf and a breed of wolf-like white dog called a Samoyed). At the pixel level, images of two Samoyeds in different poses and in different environments may be very different from each other, whereas two images of a Samoyed and a wolf in the same position and on similar backgrounds may be very similar to each other. A linear classifier, or any other ‘shallow’ classifier operating on raw pixels could not possibly distinguish the latter two, while putting the former two in the same category. This is why shallow classifiers require a good feature extractor that solves the selectivity–invariance dilemma — one that produces representations that are selective to the aspects of the image that are important for discrimination, but that are invariant to irrelevant aspects such as the pose of the animal. To make classifiers more powerful, one can use generic non-linear features, as with kernel methods, but generic features such as those arising with the Gaussian kernel do not allow the learner to generalize well far from the training examples. The conventional option is to hand design good feature extractors, which requires a considerable amount of engineering skill and domain expertise. But this can all be avoided if good features can be learned automatically using a general-purpose learning procedure. This is the key advantage of deep learning.
自1960年以来,我们就知道线性分类器只能将其输入空间划分为非常简单的区域,即由超平面分隔的半空间。 但是,诸如图像和语音识别之类的问题要求输入输出功能对输入的不相关变化不敏感,例如对象的位置,方向或照明的变化,或语音的音高或口音的变化。 对特定的微小变化敏感(例如,白狼与类似萨摩犬的类似狼的白狗之间的差异)。 在像素级别,处于不同姿势和不同环境中的两个萨摩耶犬的图像可能彼此非常不同,而位于相同位置且背景相似的萨摩耶犬和狼的两个图像可能彼此非常相似。 线性分类器或任何其他对原始像素进行操作的“浅”分类器都无法区分后两个,而将前两个分类为同一类别。 这就是为什么浅层分类器需要一个好的特征提取器来解决选择性不变性的难题,它产生的表征对图像中的识别很重要的方面是有选择性的,但对不相关的方面,如动物的姿势是不变的。 为了使分类器更加强大,人们可以使用通用的非线性特征,就像内核方法一样,但是通用的特征,如高斯内核产生的特征,不允许学习者在远离训练实例的地方进行良好的泛化。 传统的选择是手工设计好的特征提取器,这需要大量的工程技术和领域专业知识。 但是,如果可以使用通用学习过程自动学习好的功能,则可以避免所有这些情况。 这是深度学习的关键优势。
A deep-learning architecture is a multilayer stack of simple modules, all (or most) of which are subject to learning, and many of which compute non-linear input–output mappings. Each module in the stack transforms its input to increase both the selectivity and the invariance of the representation. With multiple non-linear layers, say a depth of 5 to 20, a system can implement extremely intricate functions of its inputs that are simultaneously sensitive to minute details — distinguishing Samoyeds from white wolves — and insensitive to large irrelevant variations such as the background, pose, lighting and surrounding objects.
深度学习架构是简单模块的多层堆栈,所有模块(或大多数模块)都需要学习,并且其中许多模块都会计算非线性的输入-输出映射。 堆栈中的每个模块都会对其输入进行变换,以增加表示的选择性和不变性。有了多个非线性层,比如5到20个深度,一个系统就可以对其输入实现极其复杂的功能,这些功能同时对微小的细节敏感如区分萨摩耶犬和白狼,而对大的不相关的变化如背景、姿势、灯光和周围的物体不敏感。
在这里插入图片描述
Figure 1 | Multilayer neural networks and backpropagation.
a, A multilayer neural network (shown by the connected dots) can distort the input space to make the classes of data (examples of which are on the red and blue lines) linearly separable. Note how a regular grid (shown on the left) in input space is also transformed (shown in the middle panel) by hidden units. This is an illustrative example with only two input units, two hidden units and one output unit, but the networks used for object recognition or natural language processing contain tens or hundreds of thousands of units. Reproduced with permission from C. Olah (http://colah.github.io/).
b, The chain rule of derivatives tells us how two small effects (that of a small change of x on y, and that of y on z) are composed. A small change Δx in x gets transformed first into a small change Δy in y by getting multiplied by ∂y/∂x (that is, the definition of partial derivative). Similarly, the change Δy creates a change Δz in z. Substituting one equation into the other gives the chain rule of derivatives — how Δx gets turned into Δz through multiplication by the product of ∂y/∂x and ∂z/∂x. It also works when x, y and z are vectors (and the derivatives are Jacobian matrices).
c, The equations used for computing the forward pass in a neural net with two hidden layers and one output layer, each constituting a module through which one can backpropagate gradients. At each layer, we first compute the total input z to each unit, which is a weighted sum of the outputs of the units in the layer below. Then a non-linear function f(.) is applied to z to get the output of the unit. For simplicity, we have omitted bias terms. The non-linear functions used in neural networks include the rectified linear unit (ReLU) f(z) = max(0,z), commonly used in recent years, as well as the more conventional sigmoids, such as the hyberbolic tangent, f(z) = (exp(z) − exp(−z))/(exp(z) + exp(−z)) and logistic function logistic, f(z) = 1/(1 + exp(−z)).
d, The equations used for computing the backward pass. At each hidden layer we compute the error derivative with respect to the output of each unit, which is a weighted sum of the error derivatives with respect to the total inputs to the units in the layer above. We then convert the error derivative with respect to the output into the error derivative with respect to the input by multiplying it by the gradient of f(z). At the output layer, the error derivative with respect to the output of a unit is computed by differentiating the cost function. This gives yl − tl if the cost function for unit l is 0.5(yl − tl)2, where tl is the target value. Once the ∂E/∂zk is known, the error-derivative for the weight wjk on the connection from unit j in the layer below is just yj ∂E/∂zk.

Backpropagation to train multilayer architectures

反向传播训练多层架构

From the earliest days of pattern recognition, the aim of researchers has been to replace hand-engineered features with trainable multilayer networks, but despite its simplicity, the solution was not widely understood until the mid 1980s. As it turns out, multilayer architectures can be trained by simple stochastic gradient descent. As long as the modules are relatively smooth functions of their inputs and of their internal weights, one can compute gradients using the backpropagation procedure. The idea that this could be done, and that it worked, was discovered independently by several different groups during the 1970s and 1980s.
在早期的模式识别中,研究的目标是期望利用可训练的网络代替人工设计的特征提取,尽管它很简单,但是它的解决方法直到二十世纪八十年代中期才被广泛理解。它指出的是,多层网络结构可以利用随机梯度下降来进行训练。只要每个模块是输入和内部权重的相对平滑的函数,就可以通过反向传播方法计算梯度。这个方法的可行性与有效性在二十世纪七、八十年代被几个不同的团体都独立地发现了。
The backpropagation procedure to compute the gradient of an objective function with respect to the weights of a multilayer stack of modules is nothing more than a practical application of the chain rule for derivatives. The key insight is that the derivative (or gradient) of the objective with respect to the input of a module can be computed by working backwards from the gradient with respect to the output of that module (or the input of the subsequent module) (Fig. 1). The backpropagation equation can be applied repeatedly to propagate gradients through all modules, starting from the output at the top (where the network produces its prediction) all the way to the bottom (where the external input is fed). Once these gradients have been computed, it is straightforward to compute the gradients with respect to the weights of each module.
用于计算目标函数对于多层模块中的权重的反向传播过程,仅仅是链式求导法则的一个实际应用。关键在于目标对于一个模块输入的导数可以利用对这个模块输出(或后一个模块的输入)的导数来求得(如图1)。反向传播的等式可以重复地被用来在从输出层(网络形成预测结果的输出层)到输入层(外部数据的输入层)的所有模型中传递梯度。一旦计算出这些梯度,就可以直接计算每个模块权重的梯度。
Many applications of deep learning use feedforward neural network architectures (Fig. 1), which learn to map a fixed-size input (for example, an image) to a fixed-size output (for example, a probability for each of several categories). To go from one layer to the next, a set of units compute a weighted sum of their inputs from the previous layer and pass the result through a non-linear function. At present, the most popular non-linear function is the rectified linear unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0). In past decades, neural nets used smoother non-linearities, such as tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster in networks with many layers, allowing training of a deep supervised network without unsupervised pre-training. Units that are not in the input or output layer are conventionally called hidden units. The hidden layers can be seen as distorting the input in a non-linear way so that categories become linearly separable by the last layer (Fig. 1).
深度学习的许多应用都使用前馈神经网络体系结构(图1),该体系结构学会将固定大小的输入(例如,图像)映射到固定大小的输出(例如,几个类别中的每一个的概率) 。 为了从一层到下一层,一组单位计算它们来自上一层的输入的加权和,并将结果传递给非线性函数。 目前,最流行的非线性函数是整流线性单元(ReLU),即半波整流器f(z)= max(z,0)。 在过去的几十年中,神经网络使用了更平滑的非线性,例如tanh(z)或1 /(1 + exp(-z)),但ReLU通常在具有多个层的网络中学习得更快,从而可以训练深度监督的人。 网络,无需无监督的预培训。 不在输入或输出层中的单元通常称为隐藏单元。 可以将隐藏的层视为非线性地使输入失真,以使类别变得可以由最后一层线性分离(图1)。
In the late 1990s, neural nets and backpropagation were largely forsaken by the machine-learning community and ignored by the computer-vision and speech-recognition communities. It was widely thought that learning useful, multistage, feature extractors with little prior knowledge was infeasible. In particular, it was commonly thought that simple gradient descent would get trapped in poor local minima — weight configurations for which no small change would reduce the average error.
二十世纪九十年代后期,神经网络和BP算法机器学习领域的研究者所遗弃,也被计算机视觉和和语音识别领域的研究者们忽视。人们普遍认为,在没有先验知识的情况下学习有用的多阶段特征提取器是不可行的。 特别是,通常认为简单的梯度下降会陷入不良的局部极小值—权重配置,对其进行很小的变化将减少平均误差。
In practice, poor local minima are rarely a problem with large networks. Regardless of the initial conditions, the system nearly always reaches solutions of very similar quality. Recent theoretical and empirical results strongly suggest that local minima are not a serious issue in general. Instead, the landscape is packed with a combinatorially large number of saddle points where the gradient is zero, and the surface curves up in most dimensions and curves down in the remainder. The analysis seems to show that saddle points with only a few downward curving directions are present in very large numbers, but almost all of them have very similar values of the objective function. Hence, it does not much matter which of these saddle points the algorithm gets stuck at.
实际上,较差的局部最小值在大型网络中很少出现问题。 不管初始条件如何,该系统几乎总是能获得质量非常相似的解决方案。 最近的理论和经验结果强烈表明,局部极小值通常不是一个严重的问题。 取而代之的是,景观中堆积了许多鞍点,其中梯度为零,并且曲面在大多数维度上都向上弯曲,而在其余维度上则向下弯曲。 分析似乎表明,只有少数几个向下弯曲方向的鞍点存在很多,但几乎所有鞍点的目标函数值都非常相似。 因此,算法陷入这些鞍点中的哪一个都没关系。
nterest in deep feedforward networks was revived around 2006 (refs 31–34) by a group of researchers brought together by the Canadian Institute for Advanced Research (CIFAR). The researchers introduced unsupervised learning procedures that could create layers of feature detectors without requiring labelled data. The objective in learning each layer of feature detectors was to be able to reconstruct or model the activities of feature detectors (or raw inputs) in the layer below. By ‘pre-training’ several layers of progressively more complex feature detectors using this reconstruction objective, the weights of a deep network could be initialized to sensible values. A final layer of output units could then be added to the top of the network and the whole deep system could be fine-tuned using standard backpropagation. This worked remarkably well for recognizing handwritten digits or for detecting pedestrians, especially when the amount of labelled data was very limited.
2006年前后,由加拿大高级研究所(CIFAR)召集的一组研究人员重新唤起了人们对深度前馈网络的兴趣(参考文献31-34)。研究人员引入了无监督的学习程序,这种程序可以在不需要标记数据的情况下创建特征检测器层。学习每一层特征检测器的目的是能够重建或模拟下一层特征检测器(或原始输入)的活动。通过使用该重构目标对多个逐步复杂的特征检测器进行“预训练”,可以将深度网络的权值初始化为合理值。最后一层输出单元可以被添加到网络的顶部,整个深度系统可以使用标准反向传播进行微调。这对于识别手写数字或检测行人非常有效,尤其是在标签数据量非常有限的情况下。
The first major application of this pre-training approach was in speech recognition, and it was made possible by the advent of fast graphics processing units (GPUs) that were convenient to program and allowed researchers to train networks 10 or 20 times faster. In 2009, the approach was used to map short temporal windows of coefficients extracted from a sound wave to a set of probabilities for the various fragments of speech that might be represented by the frame in the centre of the window. It achieved record-breaking results on a standard speech recognition benchmark that used a small vocabulary and was quickly developed to give record-breaking results on a large vocabulary task. By 2012, versions of the deep net from 2009 were being developed by many of the major speech groups6 and were already being deployed in Android phones. For smaller data sets, unsupervised pre-training helps to prevent overfitting, leading to significantly better generalization when the number of labelled examples is small, or in a transfer setting where we have lots of examples for some ‘source’ tasks but very few for some ‘target’ tasks. Once deep learning had been rehabilitated, it turned out that the pre-training stage was only needed for small data sets.
这种预训练方法的第一个主要应用是在语音识别中,而快速图形处理单元(GPU)的出现使得编程成为可能,并且使研究人员训练网络的速度提高了10到20倍,这使得它成为可能。 在2009年,该方法用于将从声波提取的系数的短暂时间窗口映射到可能由窗口中心的帧表示的各种语音片段的一组概率。 它在使用小词汇量的标准语音识别基准上取得了创纪录的结果,并迅速发展为在大词汇量任务上提供了创纪录的结果。到2012年,许多主要的语音集团都在开发2009年的深网版本,并且已经部署在Android手机中。对于较小的数据集,无监督的预训练有助于防止过度拟合,当标记的例子数量较少时,或者在转移环境中,我们对一些"源 "任务有很多例子,但对一些 "目标 "任务的例子很少时,会导致显著更好的泛化。一旦深度学习得到重建,就会发现预训练阶段只需要小数据集。
There was, however, one particular type of deep, feedforward network that was much easier to train and generalized much better than networks with full connectivity between adjacent layers. This was the convolutional neural network (ConvNet). It achieved many practical successes during the period when neural networks were out of favour and it has recently been widely adopted by the computervision community.
然而,存在一种特定类型的深层前馈网络,它比相邻层之间具有完全连接的网络更容易训练和推广。 这就是卷积神经网络(ConvNet)。 在神经网络失宠期间,它取得了许多实际的成功,并且最近被计算机视觉界广泛运用。

Convolutional neural networks

卷积神经网络

ConvNets are designed to process data that come in the form of multiple arrays, for example a colour image composed of three 2D arrays containing pixel intensities in the three colour channels. Many data modalities are in the form of multiple arrays: 1D for signals and sequences, including language; 2D for images or audio spectrograms; and 3D for video or volumetric images. There are four key ideas behind ConvNets that take advantage of the properties of natural signals: local connections, shared weights, pooling and the use of many layers.
ConvNets被设计为处理以多个阵列形式出现的数据,例如,由三个二维通道组成的彩色图像,其中三个二维通道在三个彩色通道中包含像素强度。 许多数据形式以多个数组的形式出现:1D表示信号和序列,包括语言;用于图像或音频光谱图的 2D;和 3D 用于视频或体积图像。ConvNets 背后有四个关键的想法,它们利用了自然信号的属性:本地连接、共享权重、池和使用多个图层。
The architecture of a typical ConvNet (Fig. 2) is structured as a series of stages. The first few stages are composed of two types of layers: convolutional layers and pooling layers. Units in a convolutional layer are organized in feature maps, within which each unit is connected to local patches in the feature maps of the previous layer through a set of weights called a filter bank. The result of this local weighted sum is then passed through a non-linearity such as a ReLU. All units in a feature map share the same filter bank. Different feature maps in a layer use different filter banks. The reason for this architecture is twofold. First, in array data such as images, local groups of values are often highly correlated, forming distinctive local motifs that are easily detected. Second, the local statistics of images and other signals are invariant to location. In other words, if a motif can appear in one part of the image, it could appear anywhere, hence the idea of units at different locations sharing the same weights and detecting the same pattern in different parts of the array. Mathematically, the filtering operation performed by a feature map is a discrete convolution, hence the name.
典型的ConvNet的体系结构(图2)由一系列阶段构成。 前几个阶段由两种类型的层组成:卷积层和池化层。 卷积层中的单元组织在特征图中,其中每个单元通过称为滤波器组的一组权重连接到上一层特征图中的局部面片。 然后,该局部加权和的结果将通过非线性(如ReLU)传递。 特征图中的所有单位共享相同的过滤器组。 图层中的不同要素图使用不同的滤镜库。 这种体系结构的原因有两个。 首先,在队列型数据例如图像中,局部的值是高度相关的,形成局部特征图是很容易检测的。其次,图像的局部统计与其他信号在位置上是不相关的。 换句话说,一个局部图像也可能出现在其他的任何地方,因此构建在不同位置共享相同权值并在队列的不同部分检测相同模式的单元的方法。在数学上,由特征图执行的过滤操作是离散卷积,因此得名。
Although the role of the convolutional layer is to detect local conjunctions of features from the previous layer, the role of the pooling layer is to merge semantically similar features into one. Because the relative positions of the features forming a motif can vary somewhat, reliably detecting the motif can be done by coarse-graining the position of each feature. A typical pooling unit computes the maximum of a local patch of units in one feature map (or in a few feature maps). Neighbouring pooling units take input from patches that are shifted by more than one row or column, thereby reducing the dimension of the representation and creating an invariance to small shifts and distortions. Two or three stages of convolution, non-linearity and pooling are stacked, followed by more convolutional and fully-connected layers. Backpropagating gradients through a ConvNet is as simple as through a regular deep network, allowing all the weights in all the filter banks to be trained.
尽管卷积层的作用是检测上一层要素的局部连接,但池层的作用是将语义上相似的要素合并为一个要素。由于构成一个模体的特征的相对位置可能有所不同,所以可以通过对每个特征的位置进行粗粒化来可靠地检测模体。一个典型的池化单元计算一个特征图中或几个特征图中的局部斑块单元的最大值。相邻的合并单元从移动了不止一个行或一列的色块中获取输入,从而减小了表示的尺寸,并为小幅度的移位和失真创建了不变性。 卷积,非线性和合并的两个或三个阶段被堆叠,随后是更多卷积和完全连接的层。通过 ConvNet 的回传播梯度与通过常规深度网络一样简单,允许训练所有滤波器库中的所有权重。
Deep neural networks exploit the property that many natural signals are compositional hierarchies, in which higher-level features are obtained by composing lower-level ones. In images, local combinations of edges form motifs, motifs assemble into parts, and parts form objects. Similar hierarchies exist in speech and text from sounds to phones, phonemes, syllables, words and sentences. The pooling allows representations to vary very little when elements in the previous layer vary in position and appearance.
深度神经网络利用了许多自然信号是成分层次结构的特性,其中通过组合较低层的特征获得较高层的特征。 在图像中,边缘的局部组合形成图案,图案组装成零件,最终组成目标。相似的层级结构也存在于来自电话里的声音、音位、音节以及单词和句子等的这些语音和文本中。当前一层的元素的位置或表现变化时,池化操作能够保证表达几乎不变。
The convolutional and pooling layers in ConvNets are directly inspired by the classic notions of simple cells and complex cells in visual neuroscience43, and the overall architecture is reminiscent of the LGN–V1–V2–V4–IT hierarchy in the visual cortex ventral pathway44. When ConvNet models and monkeys are shown the same picture, the activations of high-level units in the ConvNet explains half of the variance of random sets of 160 neurons in the monkey’s inferotemporal cortex45. ConvNets have their roots in the neocognitron46, the architecture of which was somewhat similar, but did not have an end-to-end supervised-learning algorithm such as backpropagation. A primitive 1D ConvNet called a time-delay neural net was used for the recognition of phonemes and simple words47,48.
ConvNets中的卷积和池化层直接受到视觉神经科学中简单细胞和复杂细胞的经典概念的启发,整个架构让人联想到视觉皮层腹侧通路中的LGN–V1–V2–V4–IT层次结构。 当 ConvNet 模型和猴子显示相同的图片时,ConvNet 中高级单元的激活解释了猴子推断时层皮层中随机组 160 个神经元的一半方差。 ConvNets的根源是neocognitron,其架构有些相似,但没有反向传播等端到端监督学习算法。 称为时延神经网络的原始一DConvNet用于识别音素和简单单词。
There have been numerous applications of convolutional networks going back to the early 1990s, starting with time-delay neural networks for speech recognition and document reading. The document reading system used a ConvNet trained jointly with a probabilistic model that implemented language constraints. By the late 1990s this system was reading over 10% of all the cheques in the United States. A number of ConvNet-based optical character recognition and handwriting recognition systems were later deployed by Microsoft. ConvNets were also experimented with in the early 1990s for object detection in natural images, including faces and hands, and for face recognition.
卷积网络的大量应用可以追溯到20世纪90年代初,首先是用于语音识别和文档阅读的时延神经网络。 该文档阅读系统使用了一个ConvNet,并与一个实现语言约束的概率模型一起进行了培训。 到1990年代后期,该系统已读取了美国所有支票的10%以上。 微软后来部署了许多基于ConvNet的光学字符识别和手写识别系统。ConvNets 在 20 世纪 90 年代早期也进行了实验,用于自然图像中的物体检测,包括人脸和手,以及人脸识别。

Image understanding with deep convolutional networks

用深度卷积网络理解图像

Since the early 2000s, ConvNets have been applied with great success to the detection, segmentation and recognition of objects and regions in images. These were all tasks in which labelled data was relatively abundant, such as traffic sign recognition, the segmentation of biological images particularly for connectomics, and the detection of faces, text, pedestrians and human bodies in natural images .A major recent practical success of ConvNets is face recognition .
自2000年代初以来,ConvNets已成功应用于图像中对象和区域的检测,分割和识别。 这些都是标记数据相对丰富的任务,例如交通标志识别,特别是用于连接学的生物图像分割以及自然图像中人脸,文字,行人和人体的检测。 是人脸识别。
Importantly, images can be labelled at the pixel level, which will have applications in technology, including autonomous mobile robots and self-driving cars. Companies such as Mobileye and NVIDIA are using such ConvNet-based methods in their upcoming vision systems for cars. Other applications gaining importance involve natural language understanding and speech recognition.
重要的是,可以在像素级别标记图像,这将在技术中得到应用,包括自动驾驶机器人和自动驾驶汽车。 Mobileye和NVIDIA等公司正在其即将推出的汽车视觉系统中使用基于ConvNet的方法。其他越来越重要的应用涉及自然语言理解和语音识别领域。

在这里插入图片描述
Figure 3 | From image to text. Captions generated by a recurrent neural network (RNN) taking, as extra input, the representation extracted by a deep convolution neural network (CNN) from a test image, with the RNN trained to ‘translate’ high-level representations of images into captions (top). Reproduced with permission from ref. 102. When the RNN is given the ability to focus its attention on a different location in the input image (middle and bottom; the lighter patches were given more attention) as it generates each word (bold), we found that it exploits this to achieve better ‘translation’ of images into captions.

Despite these successes, ConvNets were largely forsaken by the mainstream computer-vision and machine-learning communities until the ImageNet competition in 2012. When deep convolutional networks were applied to a data set of about a million images from the web that contained 1,000 different classes, they achieved spectacular results, almost halving the error rates of the best competing approaches1. This success came from the efficient use of GPUs, ReLUs, a new regularization technique called dropout, and techniques to generate more training examples by deforming the existing ones. This success has brought about a revolution in computer vision; ConvNets are now the dominant approach for almost all recognition and detection tasks and approach human performance on some tasks. A recent stunning demonstration combines ConvNets and recurrent net modules for the generation of image captions (Fig. 3).
尽管取得了这些成功,ConvNets在很大程度上被主流计算机视觉和机器学习社区所抛弃,直到2012年的ImageNet竞赛。当深度卷积网络应用于包含1000个不同类的网络上约100万张图像的数据集时,它们取得了惊人的结果,几乎将最佳竞争方法的错误率减半1。这个成功来自于gpu,ReLUs,一种称为dropout的新的正则化技术的有效使用,以及通过变形现有示例来生成更多训练示例的技术。这一成功带来了计算机视觉的一场革命;ConvNets现在几乎是所有识别和检测任务的主导方法,并在某些任务上接近人类的表现。最近一个惊人的演示结合了ConvNets和递归网络模块来生成图像标题(图3)。
Recent ConvNet architectures have 10 to 20 layers of ReLUs, hundreds of millions of weights, and billions of connections between units. Whereas training such large networks could have taken weeks only two years ago, progress in hardware, software and algorithm parallelization have reduced training times to a few hours.
最新的ConvNet架构具有10到20层ReLU,数亿个权重以及单元之间的数十亿个连接。虽然培训这种大型网络可能仅在两年前需要数周时间,但硬件、软件和算法并行化方面的进展已将培训时间缩短到几个小时。
The performance of ConvNet-based vision systems has caused most major technology companies, including Google, Facebook, Microsoft, IBM, Yahoo!, Twitter and Adobe, as well as a quickly growing number of start-ups to initiate research and development projects and to deploy ConvNet-based image understanding products and services.
基于ConvNet的视觉系统的性能已引起大多数主要技术公司的发展,其中包括Google,Facebook,Microsoft,IBM,Yahoo!,Twitter和Adobe,以及数量迅速增长的初创公司启动了研发项目, 部署基于ConvNet的图像理解产品和服务。
ConvNets are easily amenable to efficient hardware implementations in chips or field-programmable gate arrays. A number of companies such as NVIDIA, Mobileye, Intel, Qualcomm and Samsung are developing ConvNet chips to enable real-time vision applications in smartphones, cameras, robots and self-driving cars.
ConvNets很容易在芯片或现场可编程门阵列中进行高效的硬件实现。英伟达、Mobileye、英特尔、高通和三星等多家公司正在开发ConvNet芯片,以实现智能手机、相机、机器人和自动驾驶汽车的实时视觉应用。

Distributed representations and language processing

分布式表示和语言处理

Deep-learning theory shows that deep nets have two different exponential advantages over classic learning algorithms that do not use distributed representations21. Both of these advantages arise from the power of composition and depend on the underlying data-generating distribution having an appropriate componential structure40. First, learning distributed representations enable generalization to new combinations of the values of learned features beyond those seen during training (for example, 2n combinations are possible with n binary features)68,69. Second, composing layers of representation in a deep net brings the potential for another exponential advantage70 (exponential in the depth).
深度学习理论表明,与不使用分布式表示的经典学习算法相比,深网具有两个不同的指数优势21。 这两个优点都来自于组合的力量,并取决于具有适当组件结构的底层数据生成分布。 首先,学习分布式表示可以将学习到的特征值的新组合推广到训练期间看不到的那些特征上(例如,n个二进制特征可能有2n个组合)。其次,在深网中组成表示层会带来另一个指数优势7深度指数)的潜力。
The hidden layers of a multilayer neural network learn to represent the network’s inputs in a way that makes it easy to predict the target outputs. This is nicely demonstrated by training a multilayer neural network to predict the next word in a sequence from a local context of earlier words. Each word in the context is presented to the network as a one-of-N vector, that is, one component has a value of 1 and the rest are 0. In the first layer, each word creates a different pattern of activations, or word vectors (Fig. 4). In a language model, the other layers of the network learn to convert the input word vectors into an output word vector for the predicted next word, which can be used to predict the probability for any word in the vocabulary to appear as the next word. The network learns word vectors that contain many active components each of which can be interpreted as a separate feature of the word, as was first demonstrated in the context of learning distributed representations for symbols. These semantic features were not explicitly present in the input. They were discovered by the learning procedure as a good way of factorizing the structured relationships between the input and output symbols into multiple ‘micro-rules’. Learning word vectors turned out to also work very well when the word sequences come from a large corpus of real text and the individual micro-rules are unreliable .When trained to predict the next word in a news story, for example, the learned word vectors for Tuesday and Wednesday are very similar, as are the word vectors for Sweden and Norway. Such representations are called distributed representations because their elements (the features) are not mutually exclusive and their many configurations correspond to the variations seen in the observed data. These word vectors are composed of learned features that were not determined ahead of time by experts, but automatically discovered by the neural network. Vector representations of words learned from text are now very widely used in natural language applications.
多层神经网络的隐藏层学习以一种易于预测目标输出的方式来表示网络的输入。这一点可以通过训练多层神经网络,从早期单词的局部上下文中预测序列中的下一个单词来很好地证明。语境中的每个单词都以one-of-N向量的形式呈现给网络,也就是说,一个分量的值是,其余的都是在第一层,每个单词都会产生不同的激活模式,或者说单词向量。网络学习包含许多活动组件的词向量,每个组件都可以解释为单词的单独特征,正如在学习符号分布式表示的上下文中首次演示的 。这些语义功能在输入中未显式存在。学习过程发现,它们是将输入符号和输出符号之间的结构化关系考虑成多个"微规则"的一种良好方法。当单词序列来自大量真实文本且单个微规则不可靠时,学习词向量也工作得很好。例如,当训练预测一个新闻报道中的下一个单词时,周二和周三的学习单词向量非常相似,瑞典和挪威的单词向量也是如此。这种表征被称为分布式表征,因为它们的元素特征并不相互排斥,它们的许多配置对应于观察到的数据中的变化。这些词向量由学习到的特征组成,这些特征不是由专家提前确定的,而是由神经网络自动发现的。从文本中学习到的词的向量表示目前在自然语言应用中得到了非常广泛的应用。
The issue of representation lies at the heart of the debate between the logic-inspired and the neural-network-inspired paradigms for cognition. In the logic-inspired paradigm, an instance of a symbol is something for which the only property is that it is either identical or non-identical to other symbol instances. It has no internal structure that is relevant to its use; and to reason with symbols, they must be bound to the variables in judiciously chosen rules of inference. By contrast, neural networks just use big activity vectors, big weight matrices and scalar non-linearities to perform the type of fast ‘intuitive’ inference that underpins effortless commonsense reasoning.
表示问题是逻辑启发和神经网络启发的认知范式之间争论的核心。 在逻辑启发范式中,符号实例是某些事物,其唯一属性是它与其他符号实例相同或不同。 它没有与其使用相关的内部结构; 为了用符号进行推理,必须将它们绑定到明智选择的推理规则中的变量。 相比之下,神经网络仅使用较大的活动矢量,较大的权重矩阵和标量非线性来执行快速的“直觉”推断类型,从而支持毫不费力的常识推理。
Before the introduction of neural language models, the standard approach to statistical modelling of language did not exploit distributed representations: it was based on counting frequencies of occurrences of short symbol sequences of length up to N (called N-grams). The number of possible N-grams is on the order of VN, where V is the vocabulary size, so taking into account a context of more than a handful of words would require very large training corpora. N-grams treat each word as an atomic unit, so they cannot generalize across semantically related sequences of words, whereas neural language models can because they associate each word with a vector of real valued features, and semantically related words end up close to each other in that vector space (Fig. 4).
在引入神经语言模型之前,语言统计建模的标准方法并未利用分布式表示:它是基于对长度不超过N的短符号序列的出现频率进行计数。 可能的N元语法的数量在VN的数量级上,其中V是词汇量,因此考虑到少数单词的上下文,将需要非常大的训练语料库。 N-gram将每个单词视为一个原子单元,因此它们无法在语义上相关的单词序列中进行泛化,而神经语言模型则可以将它们与实际值特征的向量相关联,而语义相关的单词最终彼此靠近 在该向量空间中(图4)。
在这里插入图片描述
Figure 4 | Visualizing the learned word vectors. On the left is an illustration of word representations learned for modelling language, non-linearly projected to 2D for visualization using the t-SNE algorithm. On the right is a 2D representation of phrases learned by an English-to-French encoder–decoder recurrent neural network. One can observe that semantically similar words or sequences of words are mapped to nearby representations. The distributed representations of words are obtained by using backpropagation to jointly learn a representation for each word and a function that predicts a target quantity such as the next word in a sequence (for language modelling) or a whole sequence of translated words (for machine translation).

在这里插入图片描述
Figure 5 | A recurrent neural network and the unfolding in time of the computation involved in its forward computation. The artificial neurons (for example, hidden units grouped under node s with values st at time t) get inputs from other neurons at previous time steps (this is represented with the black square, representing a delay of one time step, on the left). In this way, a recurrent neural network can map an input sequence with elements xt into an output sequence with elements ot, with each ot depending on all the previous xtʹ (for tʹ ≤ t). The same parameters (matrices U,V,W ) are used at each time step. Many other architectures are possible, including a variant in which the network can generate a sequence of outputs (for example, words), each of which is used as inputs for the next time step. The backpropagation algorithm (Fig. 1) can be directly applied to the computational graph of the unfolded network on the right, to compute the derivative of a total error (for example, the log-probability of generating the right sequence of outputs) with respect to all the states st and all the parameters.

Recurrent neural networks

循环神经网络

When backpropagation was first introduced, its most exciting use was for training recurrent neural networks (RNNs). For tasks that involve sequential inputs, such as speech and language, it is often better to use RNNs (Fig. 5). RNNs process an input sequence one element at a time, maintaining in their hidden units a ‘state vector’ that implicitly contains information about the history of all the past elements of the sequence. When we consider the outputs of the hidden units at different discrete time steps as if they were the outputs of different neurons in a deep multilayer network (Fig. 5, right), it becomes clear how we can apply backpropagation to train RNNs.
首次引入反向传播时,其最令人兴奋的用途是训练循环神经网络(RNN)。 对于涉及顺序输入的任务,例如语音和语言,通常最好使用RNN(图5)。 RNN一次处理一个输入序列的一个元素,在其隐藏的单元中维护一个“状态向量”,该“状态向量”隐式包含有关该序列所有过去元素的历史信息。当我们把隐藏单元在不同离散时间步长的输出看作是深层多层网络中不同神经元的输出时,我们如何应用反向传播来训练RNN就变得很清楚了。
RNNs are very powerful dynamic systems, but training them has proved to be problematic because the backpropagated gradients either grow or shrink at each time step, so over many time steps they typically explode or vanish.
RNN是非常强大的动态系统,但事实证明,训练它们是有问题的,因为反向传播的梯度在每个时间步长都会增大或缩小,因此在许多时间步长上它们通常会爆炸或消失。
Thanks to advances in their architecture and ways of training them, RNNs have been found to be very good at predicting the next character in the text or the next word in a sequence, but they can also be used for more complex tasks. For example, after reading an English sentence one word at a time, an English ‘encoder’ network can be trained so that the final state vector of its hidden units is a good representation of the thought expressed by the sentence. This thought vector can then be used as the initial hidden state of (or as extra input to) a jointly trained French ‘decoder’ network, which outputs a probability distribution for the first word of the French translation. If a particular first word is chosen from this distribution and provided as input to the decoder network it will then output a probability distribution for the second word of the translation and so on until a full stop is chosen. Overall, this process generates sequences of French words according to a probability distribution that depends on the English sentence. This rather naive way of performing machine translation has quickly become competitive with the state-of-the-art, and this raises serious doubts about whether understanding a sentence requires anything like the internal symbolic expressions that are manipulated by using inference rules. It is more compatible with the view that everyday reasoning involves many simultaneous analogies that each contribute plausibility to a conclusion.
其体系结构和培训方式的进步,人们发现RNN非常擅长预测文本中的下一个字符或序列中的下一个单词,但它们也可以用于更复杂的任务。 例如,一次读一个单词的英语句子后,可以训练英语的“编码器”网络,使其隐藏单元的最终状态向量很好地表示了该句子表达的思想。 然后,可以将此思想向量用作联合训练的法语“解码器”网络的初始隐藏状态(或作为其额外输入),该网络将输出法语翻译的第一个单词的概率分布。 如果从该分布中选择了特定的第一个单词并将其作为输入提供给解码器网络,则它将输出翻译的第二个单词的概率分布,依此类推,直到选择了句号为止。总体而言,此过程根据取决于英语句子的概率分布生成法语单词序列。这种相当幼稚的机器翻译方式已迅速与最先进的技术竞争,这使人们严重怀疑理解句子是否需要任何像使用推理规则操纵的内部符号表达式。它更符合这样的观点,即日常推理涉及许多同时进行的类比,每个类比都有助于得出结论的合理性。
Instead of translating the meaning of a French sentence into an English sentence, one can learn to ‘translate’ the meaning of an image into an English sentence (Fig. 3). The encoder here is a deep ConvNet that converts the pixels into an activity vector in its last hidden layer. The decoder is an RNN similar to the ones used for machine translation and neural language modelling. There has been a surge of interest in such systems recently (see examples mentioned in ref. 86).
与其将法语句子的含义翻译成英语句子,不如学习将图像的含义“翻译”成英语句子(图3)。这里的编码器是一个深度ConvNet,它在最后一个隐藏层中将像素转换为活动向量。解码器是一个类似于机器翻译和神经语言建模的RNN。最近,人们对这种系统的兴趣大增。
RNNs, once unfolded in time (Fig. 5), can be seen as very deep feedforward networks in which all the layers share the same weights. Although their main purpose is to learn long-term dependencies, theoretical and empirical evidence shows that it is difficult to learn to store information for very long.
RNNs随时间展开(图5),可以看作是非常深的前馈网络,其中所有层共享相同的权重。虽然他们的主要目的是学习长期依赖性,但理论和经验证据表明,很难学会长期存储信息。
To correct for that, one idea is to augment the network with an explicit memory. The first proposal of this kind is the long short-term memory (LSTM) networks that use special hidden units, the natural behaviour of which is to remember inputs for a long time79. A special unit called the memory cell acts like an accumulator or a gated leaky neuron: it has a connection to itself at the next time step that has a weight of one, so it copies its own real-valued state and accumulates the external signal, but this self-connection is multiplicatively gated by another unit that learns to decide when to clear the content of the memory.
为了解决这个问题,一个想法是用显式内存扩展网络。 此类第一种建议是使用特殊隐藏单元的长短期记忆(LSTM)网络,其自然行为是长时间记住输入。它在下一个时间步长上具有与自身的连接,权重为1,因此它复制了自己的实值状态并累积了外部信号,但此自连接由另一个学会乘以门控,从而学会了决定何时 清除内存中的内容。
LSTM networks have subsequently proved to be more effective than conventional RNNs, especially when they have several layers for each time step87, enabling an entire speech recognition system that goes all the way from acoustics to the sequence of characters in the transcription. LSTM networks or related forms of gated units are also currently used for the encoder and decoder networks that perform so well at machine translation
LSTM网络随后被证明比常规RNN更有效,特别是当它们在每个时间步都有多层时,87使整个语音识别系统从声学到转录中的字符序列都一路走来。 LSTM网络或相关形式的门控单元目前也用于在机器翻译中表现出色的编码器和解码器网络。
Over the past year, several authors have made different proposals to augment RNNs with a memory module. Proposals include the Neural Turing Machine in which the network is augmented by a ‘tape-like’ memory that the RNN can choose to read from or write to88, and memory networks, in which a regular network is augmented by a kind of associative memory. Memory networks have yielded excellent performance on standard question-answering benchmarks. The memory is used to remember the story about which the network is later asked to answer questions.
在过去的一年里,几位作者提出了不同的建议,用内存模块来扩充RNN。建议包括神经图灵机,其中网络由RNN可以选择读或写的“磁带状”存储器扩充,以及存储网络,其中规则网络由一种联想存储器增强。 内存网络在标准问答基准方面已表现出出色的性能。 存储器用于记住故事,有关该故事后来被要求网络回答问题。
Beyond simple memorization, neural Turing machines and memory networks are being used for tasks that would normally require reasoning and symbol manipulation. Neural Turing machines can be taught ‘algorithms’. Among other things, they can learn to output a sorted list of symbols when their input consists of an unsorted sequence in which each symbol is accompanied by a real value that indicates its priority in the list. Memory networks can be trained to keep track of the state of the world in a setting similar to a text adventure game and after reading a story, they can answer questions that require complex inference90. In one test example, the network is shown a 15-sentence version of the The Lord of the Rings and correctly answers questions such as “where is Frodo now?”.
除了简单的记忆外,神经图灵机和存储网络还用于执行通常需要推理和符号操作的任务。 神经图灵机可以被称为“算法”。 除其他事项外,当他们的输入由未排序的序列组成时,他们可以学习输出已排序的符号列表,其中每个符号都带有一个表示其在列表中优先级的实数值。 可以训练记忆网络,使其在类似于文字冒险游戏的环境中跟踪世界状况,阅读故事后,它们可以回答需要复杂推理的问题90。 在一个测试示例中,该网络显示了15句的《指环王》,并正确回答了诸如“ Frodo现在在哪里?”之类的问题。

The future of deep learning

深度学习的未来

Unsupervised learning had a catalytic effect in reviving interest in deep learning, but has since been overshadowed by the successes of purely supervised learning. Although we have not focused on it in this Review, we expect unsupervised learning to become far more important in the longer term. Human and animal learning is largely unsupervised: we discover the structure of the world by observing it, not by being told the name of every object.
无监督学习在重新激发人们对深度学习的兴趣方面起到了催化作用,但是自那以后,纯监督学习的成功就使它黯然失色。 尽管我们在本评论中并未对此进行关注,但我们希望从长远来看,无监督学习将变得越来越重要。 人类和动物的学习基本上是不受监督的:我们通过观察世界来发现它的结构,而不是通过被告知每个物体的名字来发现它。
Human vision is an active process that sequentially samples the optic array in an intelligent, task-specific way using a small, high-resolution fovea with a large, low-resolution surround. We expect much of the future progress in vision to come from systems that are trained end-toend and combine ConvNets with RNNs that use reinforcement learning to decide where to look. Systems combining deep learning and reinforcement learning are in their infancy, but they already outperform passive vision systems99 at classification tasks and produce impressive results in learning to play many different video games100.
人的视觉是一个活跃的过程,它使用具有高分辨率,低分辨率的小中心凹,以智能的,针对特定任务的方式依次对光学阵列进行采样。 我们期望在视觉上未来的许多进步都将来自端到端训练的系统,并将ConvNets与RNN结合起来,后者使用强化学习来决定在哪里看。 结合了深度学习和强化学习的系统尚处于起步阶段,但在分类任务上它们已经超过了被动视觉系统,并且在学习玩许多不同的视频游戏方面产生了令人印象深刻的结果。
Natural language understanding is another area in which deep learning is poised to make a large impact over the next few years. We expect systems that use RNNs to understand sentences or whole documents will become much better when they learn strategies for selectively attending to one part at a time76,86.
自然语言理解是另一个领域,深度学习准备在未来几年产生重大影响。我们期望使用 RNN 来理解句子或整个文档的系统在学习有选择地一次处理一部分的策略时会变得更好。
Ultimately, major progress in artificial intelligence will come about through systems that combine representation learning with complex reasoning. Although deep learning and simple reasoning have been used for speech and handwriting recognition for a long time, new paradigms are needed to replace rule-based manipulation of symbolic expressions by operations on large vectors.
最终,人工智能的重大进展将通过结合表征学习和复杂推理的系统来实现。虽然深度学习和简单推理已经在语音和手写识别中使用了很长时间,但需要新的范式来取代基于规则的符号表达式操作,对大向量进行操作。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值