背景意义
随着人机交互技术的快速发展,手势识别作为一种自然、直观的交互方式,逐渐引起了广泛的关注。手势识别不仅在智能家居、虚拟现实、增强现实等领域展现出巨大的应用潜力,还在医疗、教育、安防等行业中发挥着重要作用。传统的手势识别方法多依赖于手工特征提取和简单的分类器,往往面临着环境光照变化、手势多样性及背景复杂性等挑战。因此,基于深度学习的手势识别技术逐渐成为研究的热点,其中YOLO(You Only Look Once)系列模型因其高效的实时检测能力而备受青睐。
YOLOv8作为YOLO系列的最新版本,在目标检测和实例分割任务中表现出色,具备了更高的准确性和更快的推理速度。然而,现有的YOLOv8模型在手势识别领域的应用仍存在一定的局限性,尤其是在复杂背景下的手势分割和识别。因此,基于改进YOLOv8的手势识别分割系统的研究具有重要的理论价值和实际意义。
本研究将以一个包含3700张图像和10个类别的手势数据集为基础,探讨如何通过改进YOLOv8模型,提升手势识别的准确性和鲁棒性。该数据集涵盖了多种手势类型,包括数字手势和其他常见手势,能够为模型的训练和评估提供丰富的样本。通过对数据集的深入分析,我们将识别出影响手势识别性能的关键因素,并在此基础上提出相应的改进策略。
在技术层面,本研究将通过引入数据增强、特征融合和多尺度检测等技术手段,优化YOLOv8模型的结构,以适应手势识别的特定需求。数据增强技术将有效提升模型的泛化能力,特征融合将增强模型对不同手势特征的学习能力,而多尺度检测则有助于提高模型对不同大小手势的识别精度。这些改进将使得手势识别系统在实际应用中更加高效、准确。
此外,本研究的成果将为相关领域的研究提供重要的参考价值。通过建立一个高效的手势识别分割系统,我们不仅能够推动手势识别技术的发展,还能够为智能交互系统的设计与实现提供新的思路。未来,随着智能设备的普及和人工智能技术的不断进步,手势识别将在更多的应用场景中发挥重要作用。因此,深入研究基于改进YOLOv8的手势识别分割系统,具有重要的学术意义和广泛的应用前景。
综上所述,基于改进YOLOv8的手势识别分割系统的研究,不仅有助于提升手势识别技术的性能,还将推动人机交互领域的进一步发展。通过对手势识别的深入探索,我们期待能够为未来的智能交互技术奠定坚实的基础。
图片效果



数据集信息
在本研究中,我们使用了名为“hand_sign”的数据集,以训练和改进YOLOv8-seg手势识别分割系统。该数据集专门设计用于手势识别任务,涵盖了十种不同的手势类别,旨在为计算机视觉领域的手势识别提供丰富的样本和标注信息。数据集的类别数量为10,具体类别包括:‘1’, ‘10’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’。这些类别不仅代表了不同的手势符号,也体现了手势在实际应用中的多样性和复杂性。
“hand_sign”数据集的构建过程经过精心设计,确保了数据的多样性和代表性。每个类别的手势样本均经过专业人员的标注,确保了数据的准确性和一致性。数据集中包含了不同角度、不同光照条件下的手势图像,极大地增强了模型的鲁棒性和泛化能力。这种多样化的样本选择,使得训练出的YOLOv8-seg模型能够在各种现实场景中有效识别和分割手势。
在数据集的具体构成上,类别‘1’至‘10’分别对应于不同的手势,每个手势的图像数量均衡,确保了模型在训练过程中不会偏向某一特定类别。这样的设计使得模型能够全面学习到各类手势的特征,从而提高识别的准确性和效率。此外,数据集中还包含了手势的分割标注信息,这为YOLOv8-seg模型的训练提供了必要的监督信号,使得模型不仅能够识别手势的类别,还能够精确地分割出手势在图像中的位置。
为了进一步提高模型的性能,我们在数据预处理阶段采用了一系列增强技术,包括随机裁剪、旋转、翻转和颜色调整等。这些增强方法不仅增加了数据集的有效样本数量,还帮助模型更好地适应不同的手势表现形式。通过这些手段,我们期望能够提升YOLOv8-seg在实际应用中的表现,使其在复杂环境下依然能够保持高效的手势识别能力。
在训练过程中,我们将“hand_sign”数据集分为训练集和验证集,以便对模型的性能进行有效评估。训练集用于模型的学习,而验证集则用于监测模型在未见数据上的表现,确保模型的泛化能力。通过不断迭代和优化,我们期望最终得到一个能够在实时手势识别任务中表现优异的系统。
总之,“hand_sign”数据集为本研究提供了坚实的基础,通过其丰富的手势样本和精确的标注信息,我们能够有效地训练和改进YOLOv8-seg手势识别分割系统。这一数据集不仅为手势识别领域的研究提供了重要的参考,也为实际应用中的人机交互提供了新的可能性。随着技术的不断进步,我们相信这一领域将会迎来更多的创新和突破。





核心代码
```python
# 导入必要的库
import json
from time import time
from ultralytics.hub.utils import HUB_WEB_ROOT, PREFIX, events
from ultralytics.utils import LOGGER, SETTINGS
def on_pretrain_routine_end(trainer):
"""在预训练例程结束时记录信息,并开始上传速率限制的计时器。"""
session = getattr(trainer, 'hub_session', None) # 获取训练器的会话对象
if session:
# 记录模型的访问链接
LOGGER.info(f'{PREFIX}View model at {HUB_WEB_ROOT}/models/{session.model_id} 🚀')
# 初始化计时器以控制上传速率
session.timers = {'metrics': time(), 'ckpt': time()}
def on_fit_epoch_end(trainer):
"""在每个训练周期结束时上传训练进度指标。"""
session = getattr(trainer, 'hub_session', None) # 获取训练器的会话对象
if session:
# 收集训练损失和指标
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
if trainer.epoch == 0:
from ultralytics.utils.torch_utils import model_info_for_loggers
all_plots = {**all_plots, **model_info_for_loggers(trainer)} # 记录模型信息
session.metrics_queue[trainer.epoch] = json.dumps(all_plots) # 将指标序列化并存入队列
# 检查是否超过上传速率限制
if time() - session.timers['metrics'] > session.rate_limits['metrics']:
session.upload_metrics() # 上传指标
session.timers['metrics'] = time() # 重置计时器
session.metrics_queue = {} # 清空指标队列
def on_model_save(trainer):
"""以速率限制的方式将检查点保存到Ultralytics HUB。"""
session = getattr(trainer, 'hub_session', None) # 获取训练器的会话对象
if session:
is_best = trainer.best_fitness == trainer.fitness # 判断当前模型是否是最佳模型
# 检查是否超过上传速率限制
if time() - session.timers['ckpt'] > session.rate_limits['ckpt']:
LOGGER.info(f'{PREFIX}Uploading checkpoint {HUB_WEB_ROOT}/models/{session.model_id}') # 记录上传信息
session.upload_model(trainer.epoch, trainer.last, is_best) # 上传模型
session.timers['ckpt'] = time() # 重置计时器
def on_train_end(trainer):
"""在训练结束时上传最终模型和指标到Ultralytics HUB。"""
session = getattr(trainer, 'hub_session', None) # 获取训练器的会话对象
if session:
LOGGER.info(f'{PREFIX}Syncing final model...') # 记录同步信息
# 上传最终模型和指标
session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics.get('metrics/mAP50-95(B)', 0), final=True)
session.alive = False # 停止心跳
LOGGER.info(f'{PREFIX}Done ✅\n'
f'{PREFIX}View model at {HUB_WEB_ROOT}/models/{session.model_id} 🚀') # 记录完成信息
# 定义回调函数字典,根据设置决定是否启用
callbacks = {
'on_pretrain_routine_end': on_pretrain_routine_end,
'on_fit_epoch_end': on_fit_epoch_end,
'on_model_save': on_model_save,
'on_train_end': on_train_end,
'on_train_start': on_train_start,
'on_val_start': on_val_start,
'on_predict_start': on_predict_start,
'on_export_start': on_export_start
} if SETTINGS['hub'] is True else {} # 检查是否启用hub功能
代码分析与注释
-
导入部分:导入了必要的库和模块,主要用于日志记录、时间管理和Ultralytics HUB的功能。
-
回调函数:
on_pretrain_routine_end:在预训练结束时记录模型的访问链接,并初始化上传速率限制的计时器。on_fit_epoch_end:在每个训练周期结束时,收集并上传训练指标,确保遵循上传速率限制。on_model_save:在训练过程中保存模型检查点,并根据速率限制进行上传。on_train_end:在训练结束时上传最终模型和指标,并停止会话的心跳。
-
回调字典:根据设置决定是否启用相应的回调函数,确保代码的灵活性和可配置性。
这些核心部分和注释能够帮助理解代码的主要功能和逻辑。```
这个文件是Ultralytics YOLO项目中的一个回调函数模块,主要用于在训练过程中与Ultralytics HUB进行交互,上传模型和训练进度的相关信息。代码中定义了一系列的回调函数,这些函数在不同的训练阶段被调用,以便记录和上传训练的状态和结果。
首先,文件导入了一些必要的库和模块,包括json用于处理JSON数据,time用于时间管理,以及一些来自Ultralytics的工具和设置。接着,定义了一些回调函数,每个函数都有特定的功能。
on_pretrain_routine_end函数在预训练例程结束时被调用,主要用于记录信息并启动上传速率限制的计时器。如果训练器对象中存在hub_session,则会记录当前模型的链接,并初始化计时器。
on_fit_epoch_end函数在每个训练周期结束时被调用,负责上传训练进度的指标。在每个周期结束时,它会收集训练损失和其他指标,并将这些信息以JSON格式存入会话的指标队列中。如果时间超过了上传速率限制,则会调用上传函数,并重置计时器和队列。
on_model_save函数在模型保存时被调用,主要用于将检查点上传到Ultralytics HUB,并同样遵循速率限制。如果当前模型是最佳模型,则会标记这一点,并在满足条件时上传模型。
on_train_end函数在训练结束时被调用,负责上传最终模型和相关指标到Ultralytics HUB。它会记录同步信息,并在上传完成后停止心跳信号,表示训练过程的结束。
on_train_start、on_val_start、on_predict_start和on_export_start函数分别在训练、验证、预测和导出开始时被调用,主要用于执行与这些事件相关的操作。
最后,所有的回调函数被组织成一个字典callbacks,该字典的键是事件名称,值是对应的回调函数。如果设置中启用了hub功能,则这些回调函数会被注册以供使用。
总体而言,这个文件的主要功能是通过回调机制与Ultralytics HUB进行交互,记录和上传训练过程中的各种信息,以便于后续的模型管理和分析。
import sys
import subprocess
def run_script(script_path):
"""
使用当前 Python 环境运行指定的脚本。
Args:
script_path (str): 要运行的脚本路径
Returns:
None
"""
# 获取当前 Python 解释器的路径
python_path = sys.executable
# 构建运行命令
command = f'"{python_path}" -m streamlit run "{script_path}"'
# 执行命令
result = subprocess.run(command, shell=True)
if result.returncode != 0:
print("脚本运行出错。")
# 实例化并运行应用
if __name__ == "__main__":
# 指定您的脚本路径
script_path = "web.py" # 这里可以直接指定脚本路径
# 运行脚本
run_script(script_path)
代码核心部分及详细注释:
-
导入必要的模块:
sys: 用于访问与 Python 解释器相关的变量和函数。subprocess: 用于创建新进程、连接到它们的输入/输出/错误管道,并获取返回码。
-
定义
run_script函数:- 该函数接受一个参数
script_path,表示要运行的 Python 脚本的路径。 - 使用
sys.executable获取当前 Python 解释器的路径,以确保脚本在正确的环境中运行。 - 构建一个命令字符串,使用
streamlit模块运行指定的脚本。 - 使用
subprocess.run执行构建的命令,并检查返回码以判断脚本是否成功运行。
- 该函数接受一个参数
-
主程序块:
- 使用
if __name__ == "__main__":确保只有在直接运行该脚本时才会执行以下代码。 - 指定要运行的脚本路径(这里是
"web.py")。 - 调用
run_script函数,传入脚本路径以执行该脚本。```
这个程序文件名为ui.py,主要功能是使用当前的 Python 环境来运行一个指定的脚本,具体是通过 Streamlit 框架来启动一个 Web 应用。
- 使用
程序首先导入了必要的模块,包括 sys、os 和 subprocess,这些模块分别用于获取系统信息、处理文件路径和执行外部命令。此外,还导入了 abs_path 函数,这个函数来自 QtFusion.path 模块,主要用于获取文件的绝对路径。
在 run_script 函数中,首先获取当前 Python 解释器的路径,存储在 python_path 变量中。接着,构建一个命令字符串,使用 streamlit run 命令来运行指定的脚本。这个命令将 Python 解释器的路径和脚本路径结合起来,形成一个完整的命令。
然后,使用 subprocess.run 方法来执行这个命令。该方法的 shell=True 参数允许在 shell 中执行命令。执行后,程序会检查命令的返回码,如果返回码不为零,表示脚本运行出错,程序会打印出错误信息。
在文件的最后部分,使用 if __name__ == "__main__": 来确保只有在直接运行该脚本时才会执行以下代码。这里指定了要运行的脚本路径为 web.py,并调用 run_script 函数来启动这个脚本。
总体来说,这个程序的主要作用是方便地启动一个基于 Streamlit 的 Web 应用,通过指定脚本路径来实现动态运行。
```python
def cfg2dict(cfg):
"""
将配置对象转换为字典,无论它是文件路径、字符串还是SimpleNamespace对象。
参数:
cfg (str | Path | dict | SimpleNamespace): 要转换为字典的配置对象。
返回:
cfg (dict): 转换后的字典格式的配置对象。
"""
if isinstance(cfg, (str, Path)):
cfg = yaml_load(cfg) # 从文件加载字典
elif isinstance(cfg, SimpleNamespace):
cfg = vars(cfg) # 将SimpleNamespace转换为字典
return cfg
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None):
"""
从文件或字典加载并合并配置数据。
参数:
cfg (str | Path | Dict | SimpleNamespace): 配置数据。
overrides (str | Dict | optional): 覆盖配置的文件名或字典。默认为None。
返回:
(SimpleNamespace): 训练参数的命名空间。
"""
cfg = cfg2dict(cfg)
# 合并覆盖
if overrides:
overrides = cfg2dict(overrides)
if 'save_dir' not in cfg:
overrides.pop('save_dir', None) # 忽略特殊覆盖键
check_dict_alignment(cfg, overrides)
cfg = {**cfg, **overrides} # 合并cfg和覆盖字典(优先使用覆盖)
# 特殊处理数字项目/名称
for k in 'project', 'name':
if k in cfg and isinstance(cfg[k], (int, float)):
cfg[k] = str(cfg[k])
if cfg.get('name') == 'model': # 将模型赋值给'name'参数
cfg['name'] = cfg.get('model', '').split('.')[0]
LOGGER.warning(f"WARNING ⚠️ 'name=model' 自动更新为 'name={cfg['name']}'.")
# 类型和值检查
for k, v in cfg.items():
if v is not None: # None值可能来自可选参数
if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)):
raise TypeError(f"'{k}={v}' 的类型 {type(v).__name__} 无效. "
f"有效的 '{k}' 类型是 int(例如 '{k}=0')或 float(例如 '{k}=0.5')")
elif k in CFG_FRACTION_KEYS:
if not isinstance(v, (int, float)):
raise TypeError(f"'{k}={v}' 的类型 {type(v).__name__} 无效. "
f"有效的 '{k}' 类型是 int(例如 '{k}=0')或 float(例如 '{k}=0.5')")
if not (0.0 <= v <= 1.0):
raise ValueError(f"'{k}={v}' 的值无效. "
f"有效的 '{k}' 值在 0.0 和 1.0 之间。")
elif k in CFG_INT_KEYS and not isinstance(v, int):
raise TypeError(f"'{k}={v}' 的类型 {type(v).__name__} 无效. "
f"'{k}' 必须是 int(例如 '{k}=8')")
elif k in CFG_BOOL_KEYS and not isinstance(v, bool):
raise TypeError(f"'{k}={v}' 的类型 {type(v).__name__} 无效. "
f"'{k}' 必须是 bool(例如 '{k}=True' 或 '{k}=False')")
# 返回实例
return IterableSimpleNamespace(**cfg)
def entrypoint(debug=''):
"""
该函数是ultralytics包的入口点,负责解析传递给包的命令行参数。
该函数允许:
- 以字符串列表的形式传递必需的YOLO参数
- 指定要执行的任务,可以是'detect'、'segment'或'classify'
- 指定模式,可以是'train'、'val'、'test'或'predict'
- 运行特殊模式,如'checks'
- 向包的配置传递覆盖
它使用包的默认配置并使用传递的覆盖进行初始化。
然后调用带有组合配置的CLI函数。
"""
args = (debug.split(' ') if debug else sys.argv)[1:]
if not args: # 没有传递参数
LOGGER.info(CLI_HELP_MSG)
return
# 处理特殊命令
special = {
'help': lambda: LOGGER.info(CLI_HELP_MSG),
'checks': checks.collect_system_info,
'version': lambda: LOGGER.info(__version__),
'settings': lambda: handle_yolo_settings(args[1:]),
'cfg': lambda: yaml_print(DEFAULT_CFG_PATH),
'hub': lambda: handle_yolo_hub(args[1:]),
'login': lambda: handle_yolo_hub(args),
'copy-cfg': copy_default_cfg}
# 定义常见的特殊命令误用
special.update({k[0]: v for k, v in special.items()}) # 单数
special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith('s')}) # 单数
special = {**special, **{f'-{k}': v for k, v in special.items()}, **{f'--{k}': v for k, v in special.items()}}
overrides = {} # 基本覆盖,例如 imgsz=320
for a in merge_equals_args(args): # 合并'='周围的空格
if '=' in a:
try:
k, v = parse_key_value_pair(a)
overrides[k] = v
except (NameError, SyntaxError, ValueError, AssertionError) as e:
check_dict_alignment(full_args_dict, {a: ''}, e)
elif a in TASKS:
overrides['task'] = a
elif a in MODES:
overrides['mode'] = a
elif a.lower() in special:
special[a.lower()]()
return
elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool):
overrides[a] = True # 默认布尔参数自动设置为True
elif a in DEFAULT_CFG_DICT:
raise SyntaxError(f"'{colorstr('red', 'bold', a)}' 是有效的YOLO参数,但缺少'='符号来设置其值,"
f"例如尝试 '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}")
else:
check_dict_alignment(full_args_dict, {a: ''})
# 检查键
check_dict_alignment(full_args_dict, overrides)
# 模式
mode = overrides.get('mode')
if mode is None:
mode = DEFAULT_CFG.mode or 'predict'
LOGGER.warning(f"WARNING ⚠️ 'mode' 缺失. 有效模式为 {MODES}. 使用默认 'mode={mode}'.")
# 任务
task = overrides.pop('task', None)
if task:
if task not in TASKS:
raise ValueError(f"无效的 'task={task}'. 有效任务为 {TASKS}.")
# 模型
model = overrides.pop('model', DEFAULT_CFG.model)
if model is None:
model = 'yolov8n.pt'
LOGGER.warning(f"WARNING ⚠️ 'model' 缺失. 使用默认 'model={model}'.")
# 运行命令
getattr(model, mode)(**overrides) # 使用模型的默认参数
# 显示帮助
LOGGER.info(f'💡 了解更多信息请访问 https://docs.ultralytics.com/modes/{mode}')
以上代码片段保留了核心功能,包括配置处理、命令行参数解析和任务执行,同时提供了详细的中文注释,便于理解代码的功能和逻辑。```
这个程序文件是Ultralytics YOLO(You Only Look Once)模型的配置和命令行接口(CLI)实现部分。它主要负责处理用户输入的命令行参数,加载和合并配置数据,并根据不同的任务和模式执行相应的操作。
首先,文件导入了一些必要的库和模块,包括用于文件路径处理的Path、用于类型检查的SimpleNamespace、以及Ultralytics提供的工具函数和常量。接着,定义了一些有效的任务和模式,例如训练(train)、验证(val)、预测(predict)等,以及与这些任务相关的数据集、模型和评估指标的映射。
文件中包含了一个详细的帮助信息字符串CLI_HELP_MSG,它提供了如何使用Ultralytics YOLO命令的示例,包括训练模型、进行预测、验证模型等操作。
接下来,定义了一些用于配置检查的键,包括浮点数、整数、布尔值等类型的键。然后,cfg2dict函数用于将配置对象转换为字典格式,以便后续处理。get_cfg函数则负责加载和合并配置数据,并进行类型和值的检查,确保用户输入的配置是有效的。
get_save_dir函数用于根据用户的输入参数生成保存目录。_handle_deprecation函数处理一些已弃用的配置键,确保向后兼容性。check_dict_alignment函数检查用户自定义配置与基础配置之间的键是否匹配,并提供相似键的建议。
merge_equals_args函数用于合并命令行参数中的等号(=)分隔的键值对,确保参数格式正确。handle_yolo_hub和handle_yolo_settings函数分别处理与Ultralytics HUB和YOLO设置相关的命令。
parse_key_value_pair函数用于解析键值对,将字符串形式的参数转换为相应的类型。smart_value函数则将字符串转换为其底层类型,如整数、浮点数或布尔值。
entrypoint函数是程序的入口点,负责解析命令行参数并调用相应的功能。它首先检查是否有参数传入,如果没有,则输出帮助信息。然后,它处理特殊命令(如帮助、检查、版本等),并合并用户输入的参数与默认配置。
最后,根据用户指定的任务和模式,加载相应的模型并执行指定的操作。程序还提供了一个复制默认配置文件的功能,以便用户创建自定义配置。
整体而言,这个文件为Ultralytics YOLO模型提供了一个灵活的命令行接口,用户可以通过简单的命令行输入来训练、验证和使用YOLO模型,同时也支持配置的灵活管理和调整。
```python
import os
import torch
import yaml
from ultralytics import YOLO # 导入YOLO模型
if __name__ == '__main__': # 确保该模块被直接运行时才执行以下代码
# 设置训练参数
workers = 1 # 数据加载的工作进程数量
batch = 8 # 每个批次的样本数量,需根据显存/内存调整
device = "0" if torch.cuda.is_available() else "cpu" # 判断是否使用GPU
# 获取数据集的yaml配置文件的绝对路径
data_path = abs_path(f'datasets/data/data.yaml', path_type='current')
# 读取YAML文件,保持原有顺序
with open(data_path, 'r') as file:
data = yaml.load(file, Loader=yaml.FullLoader) # 加载YAML文件内容
# 修改数据集中训练、验证和测试集的路径
if 'train' in data and 'val' in data and 'test' in data:
directory_path = os.path.dirname(data_path.replace(os.sep, '/')) # 获取目录路径
data['train'] = directory_path + '/train' # 更新训练集路径
data['val'] = directory_path + '/val' # 更新验证集路径
data['test'] = directory_path + '/test' # 更新测试集路径
# 将修改后的数据写回YAML文件
with open(data_path, 'w') as file:
yaml.safe_dump(data, file, sort_keys=False) # 保存修改后的YAML文件
# 加载YOLO模型配置文件并加载预训练权重
model = YOLO(r"C:\codeseg\codenew\50+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\改进YOLOv8模型配置文件\yolov8-seg-C2f-Faster.yaml").load("./weights/yolov8s-seg.pt")
# 开始训练模型
results = model.train(
data=data_path, # 指定训练数据的配置文件路径
device=device, # 指定使用的设备(GPU或CPU)
workers=workers, # 指定数据加载的工作进程数量
imgsz=640, # 输入图像的大小
epochs=100, # 训练的轮数
batch=batch, # 每个批次的样本数量
)
代码核心部分说明:
- 导入必要的库:导入
os、torch、yaml和YOLO模型库。 - 设置训练参数:包括工作进程数量、批次大小和设备选择(GPU或CPU)。
- 读取和修改YAML配置文件:加载数据集的配置文件,更新训练、验证和测试集的路径,并将修改后的内容写回文件。
- 加载YOLO模型:指定模型的配置文件和预训练权重。
- 训练模型:调用
train方法开始训练,传入数据路径、设备、工作进程数量、图像大小、训练轮数和批次大小等参数。```
这个程序文件train.py是用于训练 YOLO(You Only Look Once)模型的脚本,主要实现了数据准备、模型加载和训练过程的设置。
首先,程序导入了必要的库,包括 os、torch、yaml 和 ultralytics 中的 YOLO 模型。通过 matplotlib 库设置图形界面为 TkAgg,以便于后续可能的可视化操作。
在 if __name__ == '__main__': 语句下,程序确保只有在直接运行该脚本时才会执行以下代码。首先定义了一些训练参数,包括工作进程数 workers、批次大小 batch,并根据是否有可用的 GPU 设备来设置 device 为 “0”(表示使用第一个 GPU)或 “cpu”。
接着,程序构建了数据集配置文件的绝对路径 data_path,该文件是一个 YAML 格式的文件,包含了训练、验证和测试数据的路径。使用 os.path.dirname 获取目录路径,并用 yaml 库读取 YAML 文件的内容。程序检查 YAML 文件中是否包含 ‘train’、‘val’ 和 ‘test’ 项,如果存在,则将这些项的路径修改为当前目录下的相应子目录。
修改后的数据路径会被写回到 YAML 文件中,以确保后续的训练过程能够正确找到数据集。
接下来,程序加载了一个 YOLO 模型的配置文件,并使用预训练的权重文件进行初始化。这里使用的是一个特定的 YOLOv8 模型配置文件 yolov8-seg-C2f-Faster.yaml,并加载了相应的权重文件 yolov8s-seg.pt。
最后,程序调用 model.train() 方法开始训练模型,传入的数据配置文件路径、设备、工作进程数、输入图像大小(640x640)、训练的轮数(100个epoch)以及批次大小(8)。这样,模型就会在指定的参数下进行训练。
整体来看,这个脚本实现了从数据准备到模型训练的完整流程,适合用于深度学习中的目标检测任务。
```python
import os
import hashlib
from pathlib import Path
from PIL import Image, ImageOps
import numpy as np
# 定义支持的图像格式
IMG_FORMATS = 'bmp', 'jpeg', 'jpg', 'png', 'tif', 'tiff', 'webp' # 支持的图像后缀
def img2label_paths(img_paths):
"""根据图像路径定义标签路径"""
# 定义图像和标签的子目录
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}'
# 将图像路径转换为标签路径
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
def get_hash(paths):
"""返回路径列表(文件或目录)的单个哈希值"""
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # 计算文件大小总和
h = hashlib.sha256(str(size).encode()) # 基于大小生成哈希
h.update(''.join(paths).encode()) # 基于路径生成哈希
return h.hexdigest() # 返回哈希值
def exif_size(img: Image.Image):
"""返回经过EXIF校正的PIL图像大小"""
s = img.size # 获取图像的宽度和高度
if img.format == 'JPEG': # 仅支持JPEG格式
try:
exif = img.getexif() # 获取EXIF信息
if exif:
rotation = exif.get(274, None) # 获取旋转信息
if rotation in [6, 8]: # 如果图像需要旋转
s = s[1], s[0] # 交换宽度和高度
except Exception:
pass # 忽略异常
return s
def verify_image(im_file):
"""验证单个图像的有效性"""
nf, nc, msg = 0, 0, '' # 初始化找到和损坏的图像计数
try:
im = Image.open(im_file) # 打开图像文件
im.verify() # 验证图像
shape = exif_size(im) # 获取图像大小
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' # 确保图像大小有效
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' # 检查图像格式
nf = 1 # 标记图像为有效
except Exception as e:
nc = 1 # 标记图像为损坏
msg = f'WARNING ⚠️ {im_file}: ignoring corrupt image: {e}' # 记录警告信息
return im_file, nf, nc, msg # 返回图像文件名和计数信息
def check_det_dataset(dataset):
"""
检查检测数据集的有效性,下载并解压数据集(如果需要)
Args:
dataset (str): 数据集的路径或描述(如YAML文件)。
Returns:
(dict): 解析后的数据集信息和路径。
"""
# 检查数据集文件是否存在
data = check_file(dataset)
# 读取YAML文件(可选)
if isinstance(data, (str, Path)):
data = yaml_load(data, append_filename=True) # 解析YAML文件为字典
# 检查关键字段
for k in 'train', 'val':
if k not in data:
raise SyntaxError(f"{dataset} '{k}:' key missing ❌.") # 确保存在'train'和'val'字段
# 确保类名和数量匹配
if 'names' not in data:
data['names'] = [f'class_{i}' for i in range(data['nc'])] # 生成默认类名
else:
data['nc'] = len(data['names']) # 更新类数量
# 返回数据集信息
return data # 返回数据集字典
代码说明:
- img2label_paths: 根据图像路径生成对应的标签路径。
- get_hash: 计算给定路径列表的哈希值,用于数据完整性检查。
- exif_size: 获取图像的实际尺寸,考虑到EXIF信息(如旋转)。
- verify_image: 验证单个图像的有效性,检查格式和尺寸。
- check_det_dataset: 检查检测数据集的有效性,确保必要的字段存在,并返回数据集的详细信息。```
这个程序文件ultralytics\data\utils.py是用于处理与数据集相关的各种实用功能,主要用于计算机视觉任务中的数据准备和验证。文件中包含了多个函数和类,下面对其主要内容进行说明。
首先,文件导入了一系列必要的库,包括处理文件和路径的 os 和 pathlib,图像处理的 PIL 和 cv2,以及用于数值计算的 numpy。此外,还导入了一些自定义的工具函数和类,例如用于检查类名、下载数据集、处理图像等的函数。
文件中定义了一些常量,例如支持的图像和视频格式,以及一个全局变量 PIN_MEMORY,用于设置数据加载器的内存管理选项。
img2label_paths 函数用于根据图像路径生成对应的标签路径。get_hash 函数计算给定路径列表的哈希值,以便于数据完整性检查。exif_size 函数则用于获取图像的 EXIF 信息并返回修正后的图像尺寸。
verify_image 和 verify_image_label 函数用于验证单个图像及其对应标签的有效性,检查图像格式、尺寸以及标签的完整性和正确性。它们会返回验证结果,包括发现的图像数量、损坏的图像数量和相关的警告信息。
polygon2mask 和 polygons2masks 函数用于将多边形转换为二进制掩码,适用于分割任务。find_dataset_yaml 函数用于查找与数据集相关的 YAML 文件,确保数据集的格式正确。
check_det_dataset 和 check_cls_dataset 函数用于检查和验证检测和分类数据集的完整性。如果数据集未找到,函数会尝试自动下载并解压数据集,同时解析 YAML 文件以获取数据集的相关信息。
HUBDatasetStats 类用于生成与数据集相关的统计信息和 JSON 文件,支持不同类型的数据集(检测、分割、姿态估计和分类)。该类提供了方法来处理图像、生成统计信息并保存结果。
compress_one_image 函数用于压缩单个图像,保持其纵横比和质量。autosplit 函数用于自动将数据集划分为训练、验证和测试集,并将结果保存到文本文件中。
整体来看,这个文件为数据集的管理和处理提供了丰富的工具,适用于深度学习模型的训练和评估。通过这些函数和类,用户可以方便地验证数据集的完整性、格式以及进行必要的预处理。
```python
# 导入必要的库
from ultralytics.utils import SETTINGS, TESTS_RUNNING
from ultralytics.utils.torch_utils import model_info_for_loggers
# 尝试导入wandb库并进行一些基本的检查
try:
assert not TESTS_RUNNING # 确保不是在测试环境中
assert SETTINGS['wandb'] is True # 确保WandB集成已启用
import wandb as wb
assert hasattr(wb, '__version__') # 确保wandb包不是目录
import numpy as np
import pandas as pd
_processed_plots = {} # 用于存储已处理的图表的字典
except (ImportError, AssertionError):
wb = None # 如果导入失败,则将wb设置为None
def _custom_table(x, y, classes, title='Precision Recall Curve', x_title='Recall', y_title='Precision'):
"""
创建并记录自定义指标可视化到wandb.plot.pr_curve。
该函数生成一个自定义指标可视化,模仿wandb默认的精确度-召回曲线的行为,
同时允许增强的自定义。该可视化指标对于监控模型在不同类别上的性能非常有用。
参数:
x (List): x轴的值;期望长度为N。
y (List): y轴的对应值;也期望长度为N。
classes (List): 标识每个点类别的标签;长度为N。
title (str, optional): 图表的标题;默认为'Precision Recall Curve'。
x_title (str, optional): x轴的标签;默认为'Recall'。
y_title (str, optional): y轴的标签;默认为'Precision'。
返回:
(wandb.Object): 适合记录的wandb对象,展示生成的指标可视化。
"""
# 创建数据框
df = pd.DataFrame({'class': classes, 'y': y, 'x': x}).round(3)
fields = {'x': 'x', 'y': 'y', 'class': 'class'}
string_fields = {'title': title, 'x-axis-title': x_title, 'y-axis-title': y_title}
# 返回wandb表格对象
return wb.plot_table('wandb/area-under-curve/v0',
wb.Table(dataframe=df),
fields=fields,
string_fields=string_fields)
def _plot_curve(x, y, names=None, id='precision-recall', title='Precision Recall Curve', x_title='Recall', y_title='Precision', num_x=100, only_mean=False):
"""
记录指标曲线可视化。
该函数根据输入数据生成指标曲线,并将可视化记录到wandb。
曲线可以表示聚合数据(均值)或单个类别数据,具体取决于'only_mean'标志。
参数:
x (np.ndarray): x轴的数据点,长度为N。
y (np.ndarray): y轴的对应数据点,形状为CxN,其中C表示类别数量。
names (list, optional): 对应y轴数据的类别名称;长度为C。默认为空列表。
id (str, optional): 在wandb中记录数据的唯一标识符。默认为'precision-recall'。
title (str, optional): 可视化图表的标题。默认为'Precision Recall Curve'。
x_title (str, optional): x轴的标签。默认为'Recall'。
y_title (str, optional): y轴的标签。默认为'Precision'。
num_x (int, optional): 可视化的插值数据点数量。默认为100。
only_mean (bool, optional): 标志,指示是否仅绘制均值曲线。默认为True。
注意:
该函数利用'_custom_table'函数生成实际的可视化。
"""
# 创建新的x值
if names is None:
names = []
x_new = np.linspace(x[0], x[-1], num_x).round(5)
# 创建用于记录的数组
x_log = x_new.tolist()
y_log = np.interp(x_new, x, np.mean(y, axis=0)).round(3).tolist()
if only_mean:
# 仅记录均值曲线
table = wb.Table(data=list(zip(x_log, y_log)), columns=[x_title, y_title])
wb.run.log({title: wb.plot.line(table, x_title, y_title, title=title)})
else:
# 记录每个类别的曲线
classes = ['mean'] * len(x_log)
for i, yi in enumerate(y):
x_log.extend(x_new) # 添加新的x值
y_log.extend(np.interp(x_new, x, yi)) # 将y插值到新的x
classes.extend([names[i]] * len(x_new)) # 添加类别名称
wb.log({id: _custom_table(x_log, y_log, classes, title, x_title, y_title)}, commit=False)
def on_fit_epoch_end(trainer):
"""在每个训练周期结束时记录训练指标和模型信息。"""
wb.run.log(trainer.metrics, step=trainer.epoch + 1) # 记录当前周期的指标
# 记录图表
_log_plots(trainer.plots, step=trainer.epoch + 1)
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
if trainer.epoch == 0:
wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1) # 记录模型信息
# 回调函数字典
callbacks = {
'on_fit_epoch_end': on_fit_epoch_end
} if wb else {}
代码核心部分说明:
- 导入库:导入了Ultralytics YOLO相关的工具和WandB库用于实验管理和可视化。
- WandB初始化:通过
try-except结构确保在合适的环境中使用WandB,并进行基本的检查。 - 自定义表格和曲线绘制:定义了
_custom_table和_plot_curve函数,用于创建和记录精确度-召回曲线的可视化。 - 训练过程中的回调:定义了在训练周期结束时记录指标和模型信息的回调函数
on_fit_epoch_end,并将其添加到回调字典中。
这些核心部分共同构成了模型训练过程中对性能指标的记录和可视化,帮助开发者监控和评估模型的表现。```
这个程序文件 ultralytics/utils/callbacks/wb.py 是用于与 Weights & Biases(wandb)集成的回调函数,主要用于在训练过程中记录和可视化模型的性能指标。文件首先导入了一些必要的库和模块,并进行了一些初步的检查,确保在非测试环境下运行,并且确认 wandb 集成已启用。
在导入 wandb 之前,程序通过断言检查当前是否在测试模式下(TESTS_RUNNING),以及设置中的 wandb 是否被启用。接着,程序导入了 numpy 和 pandas 这两个数据处理库,并定义了一个 _processed_plots 字典,用于跟踪已处理的图表。
接下来的几个函数分别用于生成和记录不同类型的可视化图表。_custom_table 函数创建并记录一个自定义的精确度-召回曲线图,允许用户自定义标题和轴标签。该函数使用 pandas 创建一个数据框,并将其转换为 wandb 可用的格式。
_plot_curve 函数用于记录一个指标曲线的可视化,支持绘制均值曲线或各个类别的曲线。它首先生成新的 x 轴数据,然后根据输入的 y 数据进行插值,最后将结果记录到 wandb 中。
_log_plots 函数则负责记录输入字典中的图表,如果这些图表在指定步骤中尚未记录过,它会将图表添加到 wandb 的日志中。
接下来的几个函数是特定的回调函数,用于在训练的不同阶段执行特定操作。on_pretrain_routine_start 函数在预训练例程开始时初始化 wandb 项目。on_fit_epoch_end 函数在每个训练周期结束时记录训练指标和模型信息。on_train_epoch_end 函数在每个训练周期结束时记录标签损失和学习率,并在第一次周期结束时记录图表。on_train_end 函数在训练结束时保存最佳模型,并记录验证指标的曲线。
最后,程序定义了一个 callbacks 字典,包含了上述回调函数,只有在 wandb 可用时才会被填充。这个字典可以在训练过程中被调用,以便在合适的时机记录相关信息和可视化结果。整体来看,这个文件为模型训练过程中的监控和可视化提供了强大的支持。
源码文件

源码获取
欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻
865

被折叠的 条评论
为什么被折叠?



