问题记录--源码编译torchvision(待解决)

1--前言

torchvision0.12推出了GPU Video Decoding的API,可通过以下代码读取视频流。

import torchvision

reader = torchvision.io.VideoReader(file_name, device='cuda:0')
for frame in reader:
    print(frame)

需从源码编译torchvision,链接:torchvision0.12功能

2--编译安装过程

参考链接:编译安装过程

使用docker拉取Cuda11.3的镜像

docker run -it  --gpus all  -v /home/pc:/home --name test_ljf  pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel

# 退出容器
# exit

# 启动容器
docker start test_ljf

# 进入容器 (先启动后进入)
docker attach test_ljf
conda uninstall ffmpeg
pip uninstall torchvision

export TORCHVISION_INCLUDE=/home/ljf/Video_Codec_SDK_11.1.5/Interface/
export TORCHVISION_LIBRARY=/home/ljf/Video_Codec_SDK_11.1.5/Lib/linux/stubs/x86_64/

conda install -c conda-forge ffmpeg
export CUDA_HOME=/usr/local/cuda-11.3

python setup.py install

3--问题记录

编译安装过程没有报错,但测试API出现以下问题:RuntimeError: Not compiled with GPU decoder support.

使用以下代码能顺利读取视频流,但无法使用Cuda,测试失败。

reader = torchvision.io.VideoReader('/home/ljf/vision/test4.mp4')

问题及版本详细信息:问题记录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值