Ubuntu18.04下编译安装torchvision

12 篇文章 0 订阅

NMS

在这里插入图片描述

一、下载源码包

NVIDIA 各种cuda下载包
NVIDIA官方DOC
torchvison官网地址

在这里插入图片描述
本次调用是CUDA,所以下载的的是0.8.1版本

二、编译

新建torchvision文件夹,用来存放最终的安装文件(将来调用是用的include和lib)在这里插入图片描述

mkdir build
cd build

进入build文件夹后打开终端,开始进行编译(这里注意下:不要按照GitHub官方的教程来编译,那个教程的有些命令参数暂时不是很全,会报错的!)首先我们输入如下命令(注意把相关的路径修改为自己的路径):

cmake -DCMAKE_PREFIX_PATH=/XX/libtorch -DCMAKE_INSTALL_PREFIX=/XX/torchvision -DCMAKE_BUILD_TYPE=Release ..

cuda版本

 cmake -DCMAKE_PREFIX_PATH=/XX/libtorch/  -DCMAKE_INSTALL_PREFIX=/XX/torchvsion -DCMAKE_BUILD_TYPE=Release -DWITH_CUDA=ON ..

-DCMAKE_PREFIX_PATH必须设置,因为torchvision编译时会依赖LibTorch里面的相关文件。

cudnn find失败

在这里插入图片描述

在这里插入图片描述
由于电脑是cuda10.1,故下载的是以上版本。

安装sudo dpkg -i XX.deb进行安装(安装1,2顺序安装)。


安装CUDNN时,有三个安装包要安装,必须先安装libcudnn8_8.0.5.39-1+cuda10.1_amd64.deb,然后才能安装另外两个,不然就会出现以下问题:
dpkg: dependency problems prevent configuration of libcudnn8-dev:
libcudnn8-dev depends on libcudnn8 (= 8.0.5.39-1+cuda10.1); however:
Package libcudnn8 is not installed.

dpkg: error processing package libcudnn8-dev (–install):
dependency problems - leaving unconfigured
Errors were encountered while processing:
libcudnn8-dev

解决方法:
先安装libcudnn8_8.0.5.39-1+cuda10.1_amd64.deb

编译torchvison

make

在这里插入图片描述

make install#安装到(上述cmake指定路径)

在这里插入图片描述

使用

  • cmake使用
set(CMAKE_PREFIX_PATH "/usr/local/lib;/home/wsx/LibTorch/libtorch150cpu/libtorch;/home/wsx/LibTorch/libtorch150cpu/torchvision060/torchvision")

find_package(TorchVision REQUIRED)

target_link_libraries(app PUBLIC ${TORCH_LIBRARIES} ${OpenCV_LIBS} TorchVision::TorchVision)

  • makefile
					-I/XX/torchvsion/include/ \

然后就可以在源代码中开心的加入 #include “torchvision/csrc/nms.h”

参考文章

  • https://blog.csdn.net/Flag_ing/article/details/109708155
  • https://blog.csdn.net/qq_41750952/article/details/111573098
  • https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-linux
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值