NMS
一、下载源码包
NVIDIA 各种cuda下载包
NVIDIA官方DOC
torchvison官网地址
本次调用是CUDA,所以下载的的是0.8.1版本
二、编译
新建torchvision文件夹,用来存放最终的安装文件(将来调用是用的include和lib)
mkdir build
cd build
进入build文件夹后打开终端,开始进行编译(这里注意下:不要按照GitHub官方的教程来编译,那个教程的有些命令参数暂时不是很全,会报错的!)首先我们输入如下命令(注意把相关的路径修改为自己的路径):
cmake -DCMAKE_PREFIX_PATH=/XX/libtorch -DCMAKE_INSTALL_PREFIX=/XX/torchvision -DCMAKE_BUILD_TYPE=Release ..
cuda版本
cmake -DCMAKE_PREFIX_PATH=/XX/libtorch/ -DCMAKE_INSTALL_PREFIX=/XX/torchvsion -DCMAKE_BUILD_TYPE=Release -DWITH_CUDA=ON ..
-DCMAKE_PREFIX_PATH必须设置,因为torchvision编译时会依赖LibTorch里面的相关文件。
cudnn find失败
由于电脑是cuda10.1,故下载的是以上版本。
安装sudo dpkg -i XX.deb进行安装(安装1,2顺序安装)。
安装CUDNN时,有三个安装包要安装,必须先安装libcudnn8_8.0.5.39-1+cuda10.1_amd64.deb,然后才能安装另外两个,不然就会出现以下问题:
dpkg: dependency problems prevent configuration of libcudnn8-dev:
libcudnn8-dev depends on libcudnn8 (= 8.0.5.39-1+cuda10.1); however:
Package libcudnn8 is not installed.
dpkg: error processing package libcudnn8-dev (–install):
dependency problems - leaving unconfigured
Errors were encountered while processing:
libcudnn8-dev
解决方法:
先安装libcudnn8_8.0.5.39-1+cuda10.1_amd64.deb
编译torchvison
make
make install#安装到(上述cmake指定路径)
使用
- cmake使用
set(CMAKE_PREFIX_PATH "/usr/local/lib;/home/wsx/LibTorch/libtorch150cpu/libtorch;/home/wsx/LibTorch/libtorch150cpu/torchvision060/torchvision")
find_package(TorchVision REQUIRED)
target_link_libraries(app PUBLIC ${TORCH_LIBRARIES} ${OpenCV_LIBS} TorchVision::TorchVision)
- makefile
-I/XX/torchvsion/include/ \
然后就可以在源代码中开心的加入 #include “torchvision/csrc/nms.h”
参考文章
- https://blog.csdn.net/Flag_ing/article/details/109708155
- https://blog.csdn.net/qq_41750952/article/details/111573098
- https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-linux