推荐系统笔记--基于物品的协同过滤(Item CF)

本文介绍了ItemCF推荐算法的基本原理,利用物品间的相似度预测用户兴趣。算法强调如果用户喜欢某物品且该物品与其他物品相似,就推荐相似物品。文章还涉及了物品相似度的衡量方法以及召回流程的离线和在线步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1--基本原理

        Item CF的原理是根据物品的相似度来将新的物品推荐给用户;下图中用户对红色物品的感兴趣度为 [2, 1, 4, 3],红色物品与橙色物品的相似度为 [0.1, 0.4, 0.2, 0.6],因此可以计算出用户对橙色物品的感兴趣度。

        Item CF的基本思想是:如果用户A喜欢物品 item1,而且物品 item1 和 物品 item2 很相似,那么用户很可能也喜欢 item2,因此可以将 item2 推荐给用户A;

2--物品相似度

        一般来说,两个物品的受众重合度越高,两个物品越相似。

3--ItemCF召回流程

① 离线计算维护两个索引:用户→物品物品→物品

② 线上召回:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值