前缀和与差分算法

前缀和

问题背景:

输入一个长度为 n 的整数序列。
接下来再输入 m 个询问,每个询问输入一对 l,r。
对于每个询问,输出原序列中从第 l 个数到第 r 个数的和。

朴素做法:
对于每一次查询,都进行累加操作,即用for循环求出A[l]+…+A[r]的值,复杂度为 O ( n ) O(n) O(n)

前缀和做法:
对原数组进行预处理,假设原数组为A[1…n],则可用递推式A[i] = A[i-1] + A[i]得出新的数组A,易知A[i]保存的是从数组下标1到i的元素的和,则A[l]+…+A[r]的值即为A[r]-A[l-1]

这样的话,每次查询的复杂度就降到 O ( 1 ) O(1) O(1)


#include <iostream>
using namespace std;

const int N = 1000100;
int a[N], s[N], n,m;

int main()
{
    cin >> n >> m;
    for (int i = 1;i <= n;i++)  cin >> a[i];
    for (int i = 1;i <= n;i++)  a[i] = a[i - 1] + a[i];
    int l, r;
    while (m--)
    {
        cin >> l >> r;
        cout << a[r] - a[l - 1] << endl;
    }
    return 0;
}

差分

问题背景:

输入一个长度为 n 的整数序列。
接下来输入 m 个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r] 之间的每个数加上 c。
请你输出进行完所有操作后的序列。

差分可以看做是前缀和的逆过程,下式中a是b的前缀和,它满足的是:
a n = ∑ i = 1 n b i a_{n}=\sum_{i=1}^{n} b_{i} an=i=1nbi
b的递推式为:
b i = { a i − a i − 1 i ∈ [ 2 , n ] a 1 i = 1 b_{i}=\left\{\begin{array}{ll} a_{i}-a_{i-1} & i \in[2, n] \\ a_{1} & i=1 \end{array}\right. bi={aiai1a1i[2,n]i=1
具体实现

  • 为了使得a[l,r]之间的每个数都加上c,只需:b[l]+=c,b[r+1]-=c
  • 之后,对b数组进行前缀和运算
#include <iostream>

using namespace std;

const int N=1e5+10;
int a[N],b[N];


int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>a[i];//读入a数组
    for(int i=1;i<=n;i++) b[i]=a[i]-a[i-1];
    
    while(m--)
    {
        int l,r,c;
        cin>>l>>r>>c;
        
        b[l]+=c;
        b[r+1]-=c;
        
    }
    for(int i=1;i<=n;i++) b[i]=b[i-1]+b[i];
    for(int i=1;i<=n;i++) cout<<b[i]<<' ';
    return 0;
}

二维差分

#include <iostream>

using namespace std;

const int N=1010;
int a[N][N],b[N][N];

void insert(int x1,int y1,int x2,int y2,int c)
{
    b[x1][y1]+=c;
    b[x1][y2+1]-=c;
    b[x2+1][y1]-=c;
    b[x2+1][y2+1]+=c;
    
}

int main()
{
    int n,m,q;
    cin>>n>>m>>q;
    //读入a矩阵
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++) 
            cin>>a[i][j];
    //构造b矩阵
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            insert(i,j,i,j,a[i][j]);
    
    while(q--)
    {
        int x1,y1,x2,y2,c;
        cin>>x1>>y1>>x2>>y2>>c;
        insert(x1,y1,x2,y2,c);
    }
    
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1];
            
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(j==1) cout<<b[i][j];
            else cout<<' '<<b[i][j];
        }
        if(i!=n) cout<<'\n';
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值