前缀和
问题背景:
输入一个长度为 n 的整数序列。
接下来再输入 m 个询问,每个询问输入一对 l,r。
对于每个询问,输出原序列中从第 l 个数到第 r 个数的和。
朴素做法:
对于每一次查询,都进行累加操作,即用for循环求出A[l]+…+A[r]的值,复杂度为
O
(
n
)
O(n)
O(n)
前缀和做法:
对原数组进行预处理,假设原数组为A[1…n],则可用递推式A[i] = A[i-1] + A[i]得出新的数组A,易知A[i]保存的是从数组下标1到i的元素的和,则A[l]+…+A[r]的值即为A[r]-A[l-1]
这样的话,每次查询的复杂度就降到 O ( 1 ) O(1) O(1)
#include <iostream>
using namespace std;
const int N = 1000100;
int a[N], s[N], n,m;
int main()
{
cin >> n >> m;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i <= n;i++) a[i] = a[i - 1] + a[i];
int l, r;
while (m--)
{
cin >> l >> r;
cout << a[r] - a[l - 1] << endl;
}
return 0;
}
差分
问题背景:
输入一个长度为 n 的整数序列。
接下来输入 m 个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r] 之间的每个数加上 c。
请你输出进行完所有操作后的序列。
差分可以看做是前缀和的逆过程,下式中a是b的前缀和,它满足的是:
a
n
=
∑
i
=
1
n
b
i
a_{n}=\sum_{i=1}^{n} b_{i}
an=i=1∑nbi
b的递推式为:
b
i
=
{
a
i
−
a
i
−
1
i
∈
[
2
,
n
]
a
1
i
=
1
b_{i}=\left\{\begin{array}{ll} a_{i}-a_{i-1} & i \in[2, n] \\ a_{1} & i=1 \end{array}\right.
bi={ai−ai−1a1i∈[2,n]i=1
具体实现
- 为了使得a[l,r]之间的每个数都加上c,只需:b[l]+=c,b[r+1]-=c
- 之后,对b数组进行前缀和运算
#include <iostream>
using namespace std;
const int N=1e5+10;
int a[N],b[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>a[i];//读入a数组
for(int i=1;i<=n;i++) b[i]=a[i]-a[i-1];
while(m--)
{
int l,r,c;
cin>>l>>r>>c;
b[l]+=c;
b[r+1]-=c;
}
for(int i=1;i<=n;i++) b[i]=b[i-1]+b[i];
for(int i=1;i<=n;i++) cout<<b[i]<<' ';
return 0;
}
二维差分
#include <iostream>
using namespace std;
const int N=1010;
int a[N][N],b[N][N];
void insert(int x1,int y1,int x2,int y2,int c)
{
b[x1][y1]+=c;
b[x1][y2+1]-=c;
b[x2+1][y1]-=c;
b[x2+1][y2+1]+=c;
}
int main()
{
int n,m,q;
cin>>n>>m>>q;
//读入a矩阵
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>a[i][j];
//构造b矩阵
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
insert(i,j,i,j,a[i][j]);
while(q--)
{
int x1,y1,x2,y2,c;
cin>>x1>>y1>>x2>>y2>>c;
insert(x1,y1,x2,y2,c);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(j==1) cout<<b[i][j];
else cout<<' '<<b[i][j];
}
if(i!=n) cout<<'\n';
}
return 0;
}