基于Deep learning的MUSIC声源定位方法(2)

DA-MUSIC: Data-Driven DOA Estimation via Deep Augmented MUSIC Algorithm


1. 背景与动机

方向到达(DOA)估计是雷达、通信、声学信号处理等领域的重要任务。经典的 MUSIC(Multiple Signal Classification)算法因其高分辨率能力而被广泛应用。然而,MUSIC 存在以下局限性:

  • 对协方差矩阵的估计依赖样本数量,在低信噪比(SNR)下性能显著下降;
  • 无法有效处理宽带信号,计算复杂度较高;
  • 假设信号源数量已知,这在实际中难以满足。

研究目标

本文提出了一种混合算法 DA-MUSIC,结合深度学习与传统 MUSIC 的优势,解决其局限性,提供高效、鲁棒的 DOA 估计。文章通过伪协方差矩阵的改进、子空间分解和神经网络辅助伪谱分析实现窄高效 DOA 估计。


2. 方法:DA-MUSIC 算法

DA-MUSIC 在传统 MUSIC 基础上引入深度学习模块,包括伪协方差矩阵学习、信号子空间分解、伪谱计算以及神经网络辅助伪谱分析和动态信号源数量预测。

2.1 信号模型

窄带信号模型

窄带信号假设源信号在传输过程中没有显著的频率失真或频率扩展,适用于大多数标准的通信和雷达系统。对于由 M M M 个阵列元件组成的均匀线性阵列(ULA),其接收信号模型为 (假设有K个声源):

x ( t ) = A ( θ ) s ( t ) + v ( t ) \mathbf{x}(t) = \mathbf{A}(\boldsymbol{\theta})\mathbf{s}(t) + \mathbf{v}(t) x(t)=A(θ)s(t)+v(t)

其中:

  • x ( t ) ∈ C M × 1 \mathbf{x}(t) \in \mathbb{C}^{M \times 1} x(t)CM×1 为阵列接收到的信号向量;
  • A ( θ ) = [ a ( θ 1 ) , … , a ( θ K ) ] ∈ C M × K \mathbf{A}(\boldsymbol{\theta}) = [\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)] \in \mathbb{C}^{M \times K} A(θ)=[a(θ1),,a(θK)]CM×K 是导向矩阵;
  • s ( t ) ∈ C K × 1 \mathbf{s}(t) \in \mathbb{C}^{K \times 1} s(t)CK×1 表示信号源的复信号向量;
  • v ( t ) ∈ C M × 1 \mathbf{v}(t) \in \mathbb{C}^{M \times 1} v(t)CM×1 是加性高斯白噪声向量。

导向向量 a ( θ k ) \mathbf{a}(\theta_k) a(θk) 定义为:

a ( θ k ) = [ 1 e − j 2 π d sin ⁡ ( θ k ) λ e − j 4 π d sin ⁡ ( θ k ) λ ⋮ e −

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值