基于Deep learning的MUSIC声源定位方法(1)

(1) DeepMUSIC: Multiple Signal Classification via Deep Learning

1. 背景与动机

方向到达估计(DOA)是雷达、声纳、声学和通信等领域中的核心任务,传统的 MUSIC(Multiple Signal Classification)算法是最经典的方法之一。然而,现有方法存在以下局限:

  • 模型依赖性:依赖信号协方差矩阵的精确性,对噪声和信号不完善的情况下性能下降显著。
  • 多目标估计困难:传统方法对多个目标的 DOA 估计能力有限。
  • 计算复杂度高:尤其在大范围扫描或低信噪比(SNR)场景下性能受限。

深度学习近年来在非线性映射和特征提取方面展现出巨大潜力。为此,文章提出了一种基于深度学习的框架 DeepMUSIC,结合传统 MUSIC 算法和深度卷积神经网络(CNN),提升 DOA 估计性能。


2. 信号模型

2.1 接收信号模型

在 DOA 估计问题中,考虑一个 M M M 元均匀线性阵列(Uniform Linear Array, ULA),其接收的信号由多个远场声源传播而来。假设有 K K K 个远场声源,阵列接收的信号在时刻 t i t_i ti 可表示为:
y ( t i ) = ∑ k = 1 K a ( θ k ) s k ( t i ) + n ( t i ) , i = 1 , 2 , … , T \mathbf{y}(t_i) = \sum_{k=1}^K \mathbf{a}(\theta_k) s_k(t_i) + \mathbf{n}(t_i), \quad i = 1, 2, \dots, T y(ti)=k=1Ka(θk)sk(ti)+n(ti),i=1,2,,T
其中:

  • y ( t i ) ∈ C M × 1 \mathbf{y}(t_i) \in \mathbb{C}^{M \times 1} y(ti)CM×1:阵列在时刻 t i t_i ti 接收到的信号向量。
  • a ( θ k ) ∈ C M × 1 \mathbf{a}(\theta_k) \in \mathbb{C}^{M \times 1} a(θk)CM×1:方向角为 θ k \theta_k θk 的导向向量,定义为:
    a ( θ k ) = [ 1 e − j 2 π d sin ⁡
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值