(1) DeepMUSIC: Multiple Signal Classification via Deep Learning
1. 背景与动机
方向到达估计(DOA)是雷达、声纳、声学和通信等领域中的核心任务,传统的 MUSIC(Multiple Signal Classification)算法是最经典的方法之一。然而,现有方法存在以下局限:
- 模型依赖性:依赖信号协方差矩阵的精确性,对噪声和信号不完善的情况下性能下降显著。
- 多目标估计困难:传统方法对多个目标的 DOA 估计能力有限。
- 计算复杂度高:尤其在大范围扫描或低信噪比(SNR)场景下性能受限。
深度学习近年来在非线性映射和特征提取方面展现出巨大潜力。为此,文章提出了一种基于深度学习的框架 DeepMUSIC,结合传统 MUSIC 算法和深度卷积神经网络(CNN),提升 DOA 估计性能。
2. 信号模型
2.1 接收信号模型
在 DOA 估计问题中,考虑一个 M M M 元均匀线性阵列(Uniform Linear Array, ULA),其接收的信号由多个远场声源传播而来。假设有 K K K 个远场声源,阵列接收的信号在时刻 t i t_i ti 可表示为:
y ( t i ) = ∑ k = 1 K a ( θ k ) s k ( t i ) + n ( t i ) , i = 1 , 2 , … , T \mathbf{y}(t_i) = \sum_{k=1}^K \mathbf{a}(\theta_k) s_k(t_i) + \mathbf{n}(t_i), \quad i = 1, 2, \dots, T y(ti)=k=1∑Ka(θk)sk(ti)+n(ti),i=1,2,…,T
其中:
- y ( t i ) ∈ C M × 1 \mathbf{y}(t_i) \in \mathbb{C}^{M \times 1} y(ti)∈CM×1:阵列在时刻 t i t_i ti 接收到的信号向量。
- a ( θ k ) ∈ C M × 1 \mathbf{a}(\theta_k) \in \mathbb{C}^{M \times 1} a(θk)∈CM×1:方向角为 θ k \theta_k θk 的导向向量,定义为:
a ( θ k ) = [ 1 e − j 2 π d sin