SubspaceNet: Deep Learning-Aided Subspace Methods for DoA Estimation
背景与动机
方向到达(DoA)估计是阵列信号处理中的关键任务,广泛应用于雷达、通信和声学领域。经典的子空间方法(如 MUSIC 和 Root-MUSIC)因其高分辨率性能而受到青睐。然而,这些方法在实际应用中面临以下挑战:
- 低信噪比(SNR): 噪声会显著影响协方差矩阵的估计精度,导致子空间分解性能下降;
- 少快拍(snapshots)条件: 快拍数不足会增加协方差矩阵估计的偏差,降低伪谱峰值的分辨能力;
- 阵列误差和失配: 假设阵列完全校准,而实际中非理想阵列模型会降低方法的适用性。
为了克服这些问题,本文提出了一种结合深度学习与子空间方法的新框架——SubspaceNet。该方法通过深度学习模块增强伪协方差矩阵的鲁棒性,同时保留 Root-MUSIC 的高分辨率特性和理论解释性,特别适用于低 SNR 和少快拍场景。
信号模型
接收信号由 N N N 个均匀线性阵列(ULA)接收,其数学模型为:
X = A ( θ ) S + V , \mathbf{X} = \mathbf{A}(\boldsymbol{\theta})\mathbf{S} + \mathbf{V}, X=A(θ)S+V,
其中:
- X ∈ C N × T \mathbf{X} \in \mathbb{C}^{N \times T} X∈CN×T 是接收信号矩阵;
- A ( θ ) = [ a ( θ 1 ) , … , a ( θ M ) ] \mathbf{A}(\boldsymbol{\theta}) = [\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_M)] A(θ)=[a(θ1),…,a(θM)] 是导向矩阵;
- a ( θ k ) \mathbf{a}(\theta_k) a(θk) 是方向 θ k \theta_k θk 的导向向量,定义为:
a ( θ k ) = [ 1 e − j π sin ( θ k ) e − j 2 π sin ( θ k ) ⋮ e − j ( N − 1 ) π sin ( θ k ) ] ; \mathbf{a}(\theta_k) = \begin{bmatrix} 1 \\ e^{-j\pi \sin(\theta_k)} \\ e^{-j2\pi \sin(\theta_k)} \\ \vdots \\ e^{-j(N-1)\pi \sin(\theta_k)} \end{bmatrix}; a(θk)= 1e−jπsin(θ