数学分析笔记7:定积分

在这里插入图片描述

定积分的定义与性质

定积分的定义

定积分的概念来源于求和运算的连续化,我们目前已知的求和手段都是有限求和,为了将求和运算扩充到无限个数求和,必须引入极限手段。扩充手段有两种——可列情形对应的是级数理论,不可列情形对应的则是积分。但我们都要首先清楚,本节所讨论的本质,就是无穷情形下的“求和”运算。
定义7.1 f ( x ) f(x) f(x)是定义在闭区间 [ a , b ] [a,b] [a,b]的函数, x 0 , x 1 , ⋯   , x n x_0,x_1,\cdots,x_n x0,x1,,xn满足: a = x 0 < x 1 < ⋯ < x n = b a=x_0<x_1<\cdots<x_n=b a=x0<x1<<xn=b,集合 { x 0 , x 1 , ⋯   , x n } \{x_0,x_1,\cdots,x_n\} {x0,x1,,xn}称为 [ a , b ] [a,b] [a,b]的一个分划,记为 Δ \Delta Δ
对每个小区间: [ x i − 1 , x i ] ( i = 1 , ⋯   , n ) [x_{i-1},x_i](i=1,\cdots,n) [xi1,xi](i=1,,n),取 ξ i ∈ [ x i − 1 , x i ] ( i = 1 , ⋯   , n ) \xi_i\in[x_{i-1},x_i](i=1,\cdots,n) ξi[xi1,xi](i=1,,n),和式: ∑ i = 1 n f ( ξ i ) ( x i − x i − 1 ) \sum_{i=1}^{n}{f(\xi_i)(x_i-x_{i-1})} i=1nf(ξi)(xixi1)称为 f ( x ) f(x) f(x)在分划 Δ \Delta Δ下的一个Riemann和,记为 S ( Δ , f ) S(\Delta,f) S(Δ,f)

Riemann和有鲜明的几何意义,见下图,为了求得曲线 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b]区间上的曲线段下的面积,我们通常用有限矩体进行逼近。Riemann和的每一项对应一个矩形的面积,可以预见:当区间越分越细的时候,矩形面积和就逼近图形的真实面积,就是定积分的基本思想。
定义7.2 f ( x ) f(x) f(x)是定义在闭区间 [ a , b ] [a,b] [a,b]的函数, Δ = { x 0 , x 1 , ⋯   , x n } \Delta = \{x_0,x_1,\cdots,x_n\} Δ={x0,x1,,xn} [ a , b ] [a,b] [a,b]的任意分划,令 λ ( Δ ) = max ⁡ 1 ≤ i ≤ n ( x i − x i − 1 ) \lambda(\Delta)=\max_{ 1\le i\le n}(x_{i}-x_{i-1}) λ(Δ)=max1in(xixi1),如果存在实数 I I I,对任意的 ε > 0 \varepsilon>0 ε>0,存在 δ > 0 \delta>0 δ>0,当 λ ( Δ ) < δ \lambda(\Delta)<\delta λ(Δ)<δ时,无论小区间内点如何选取,都有 ∣ S ( Δ , f ) − A ∣ < ε |S(\Delta,f)-A|<\varepsilon S(Δ,f)A<ε则称 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上Riemann可积,简称可积, I I I称为 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上的积分,记为 ∫ a b f ( x ) d x = I \int_a^b{f(x)dx}=I abf(x)dx=I
定积分的几何意义就是区间 y = f ( x ) y=f(x) y=f(x) x x x轴,连同 x = a x=a x=a x = b x=b x=b围成图形的面积。

定积分的可积性理论——达布理论

下一个问题是:满足什么条件下, f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]是可积的?我们先从连续函数入手。
定理7.1 闭区间 [ a , b ] [a,b] [a,b]上的连续函数都是Riemann可积的

证:
为了证明闭区间 [ a , b ] [a,b] [a,b]上的连续函数 f ( x ) f(x) f(x)都是Riemann可积的,我们首先要找到一个实数 I I I,也就是 f ( x ) f(x) f(x)的积分值,其次,再证明 f ( x ) f(x) f(x)的积分就是 I I I
第一步:找一个实数 I I I
先取一个分划列 Δ n = { x 0 ( n ) , x 1 ( n ) , ⋯   , x 2 n ( n ) } \Delta_n=\{x^{(n)}_0,x^{(n)}_1,\cdots,x^{(n)}_{2^n}\} Δn={x0(n),x1(n),,x2n(n)},其中 x k ( n ) = a + k 2 n ( b − a ) x^{(n)}_k=a+\frac{k}{2^n}(b-a) xk(n)=a+2nk(ba),令区间 I k ( n ) = [ x k − 1 ( n ) , x k ( n ) ] I^{(n)}_k = [x^{(n)}_{k-1},x^{(n)}_k] Ik(n)=[xk1(n),xk(n)] k = 1 , ⋯   , 2 n k=1,\cdots,2^n k=1,,2n n = 1 , 2 , ⋯ n=1,2,\cdots n=1,2,。那么 Δ n \Delta_n Δn Δ n − 1 \Delta_{n-1} Δn1的加细(即 Δ n ⊂ Δ n − 1 \Delta_n\subset\Delta_{n-1} ΔnΔn1),再令 M k ( n ) = max ⁡ x ∈ I k ( n ) ( f ( x ) ) M_k^{(n)} = \max_{x\in I_k^{(n)}}(f(x)) Mk(n)=maxxIk(n)(f(x)), m k ( n ) = min ⁡ x ∈ I k ( n ) ( f ( x ) ) m_k^{(n)} = \min_{x\in I_k^{(n)}}(f(x)) mk(n)=minxIk(n)(f(x)),作和式 S ‾ ( Δ n ) = ∑ k = 0 2 n M k ( n ) b − a 2 n \overline{S}(\Delta_{n}) = \sum_{k=0}^{2^n}{M_k^{(n)}\frac{b-a}{2^n}} S(Δn)=k=02nMk(n)2nba S ‾ ( Δ n ) = ∑ k = 0 2 n m k ( n ) b − a 2 n \underline{S}(\Delta_{n}) = \sum_{k=0}^{2^n}{m_k^{(n)}\frac{b-a}{2^n}} S(Δn)=k=02nmk(n)2nba S ‾ ( Δ n ) \overline{S}(\Delta_{n}) S(Δn)是单调下降的, S ‾ ( Δ n ) \underline{S}(\Delta_{n}) S(Δn)是单调上升。令 I ‾ = lim ⁡ n → ∞ S ‾ ( Δ n ) \overline{I} = \lim_{n\to\infty}{\overline{S}(\Delta_{n})} I=limnS(Δn) I ‾ = lim ⁡ n → ∞ S ‾ ( Δ n ) \underline{I} = \lim_{n\to\infty}{\underline{S}(\Delta_{n})} I=limnS(Δn) S ‾ ( Δ n ) − S ‾ ( Δ n ) = b − a 2 n ∑ k = 0 ( M k ( n ) − m k ( n ) ) \overline{S}(\Delta_{n})-\underline{S}(\Delta_{n}) =\frac{b-a}{2^n}\sum_{k=0}{(M_k^{(n)}-m_k^{(n)})} S(Δn)S(Δn)=2nbak=0(Mk(n)mk(n)) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续, f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上一致连续,对任意的 ε > 0 \varepsilon>0 ε>0,存在 δ > 0 \delta>0 δ>0,对任意的 [ a , b ] [a,b] [a,b]内两点 x 1 , x 2 x_1,x_2 x1,x2
,只要 ∣ x 1 − x 2 ∣ < δ |x_1-x_2|<\delta x1x2<δ,就有 ∣ f ( x 1 ) − f ( x 2 ) ∣ < ε b − a |f(x_1)-f(x_2)|<\frac{\varepsilon}{b-a} f(x1)f(x2)<baε再由连续性 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可取得最大值和最小值。这样,只要 b − a 2 n < δ \frac{b-a}{2^n}<\delta 2nba<δ就有 ( M k ( n ) − m k ( n ) ) < ε b − a (M_k^{(n)}-m_k^{(n)})<\frac{\varepsilon}{b-a} (Mk(n)mk(n))<baε S ‾ ( Δ n ) − S ‾ ( Δ n ) < ε \overline{S}(\Delta_{n})-\underline{S}(\Delta_{n})<\varepsilon S(Δn)S(Δn)<ε I = I ‾ = I ‾ I=\overline{I}=\underline{I} I=I=I
第二步,证明: ∫ a b f ( x ) d x = I \int_a^b{f(x)dx}=I abf(x)dx=I
对任意的分划 Δ \Delta Δ,令 Δ n ′ = Δ n ∪ Δ \Delta^\prime_n = \Delta_n \cup \Delta Δn=ΔnΔ,再令 Δ n ′ = { y 0 ( n ) , y 1 ( n ) , ⋯   , y k n ( n ) } \Delta^\prime_n = \{y_0^{(n)},y_1^{(n)},\cdots,y_{k_n}^{(n)}\} Δn={y0(n),y1(n),,ykn(n)},其中 a = y 0 ( n ) < y 1 ( n ) < ⋯ < y k n ( n ) = b a=y_0^{(n)}<y_1^{(n)}<\cdots<y_{k_n}^{(n)}=b a=y0(n)<y1(n)<<ykn(n)=b,任取一个Riemann和 S ( Δ , f ) S(\Delta,f) S(Δ,f),设 ξ k ( n ) \xi_k^{(n)} ξk(n)是区间 [ y k − 1 ( n ) , y k ( n ) ] [y_{k-1}^{(n)},y_k^{(n)}] [yk1(n),yk(n)] Δ \Delta Δ中对应的分划中, f ( x ) f(x) f(x)的取点。 M k ′ ′ ( n ) , m k ′ ( n ) M_k^{'\prime(n)},m_k^{\prime(n)} Mk(n),mk(n) f ( x ) f(x) f(x)在区间 [ y k − 1 ( n ) , y k ( n ) ] [y_{k-1}^{(n)},y_k^{(n)}] [yk1(n),yk(n)]的最大值和最小值。
同时令 S ‾ ( Δ n ′ ) = ∑ i = 0 k n M k ′ ( n ) ( y k ( n ) − y k − 1 ( n ) ) \overline{S}(\Delta^\prime_n) = \sum_{i=0}^{k_n} {M_k^{\prime(n)}(y_k^{(n)}-y_{k-1}^{(n)})} S(Δn)=i=0knMk(n)(yk(n)yk1(n)) S ‾ ( Δ n ′ ) = ∑ i = 0 k n m k ′ ( n ) ( y k ( n ) − y k − 1 ( n ) ) \underline{S}(\Delta^\prime_n) = \sum_{i=0}^{k_n} {m_k^{\prime(n)}(y_k^{(n)}-y_{k-1}^{(n)})} S(Δn)=i=0knmk(n)(yk(n)yk1(n))由于 Δ n ′ \Delta^\prime_n Δn Δ n \Delta_n Δn的加细,就有 S ‾ ( Δ n ) ≤ S ‾ ( Δ n ′ ) ≤ S ‾ ( Δ n ′ ) ≤ S ‾ ( Δ n ) \underline{S}(\Delta_n)\le\underline{S}(\Delta^\prime_n) \le\overline{S}(\Delta^\prime_n)\le\overline{S}(\Delta_n) S(Δn)S(Δn)S(Δn)S(Δn)由夹逼准则,就有 lim ⁡ n → ∞ S ‾ ( Δ n ′ ) = lim ⁡ n → ∞ S ‾ ( Δ n ′ ) = I \lim_{n\to\infty}{\overline{S}(\Delta^\prime_n)} =\lim_{n\to\infty}{\underline{S}(\Delta^\prime_n)} =I nlimS(Δn)=nlimS(Δn)=I对任意的 ε > 0 \varepsilon>0 ε>0,存在 N N N n ≥ N n\ge N nN时,有 ∣ lim ⁡ n → ∞ S ‾ ( Δ n ′ ) − I ∣ < ε 2 |\lim_{n\to\infty}{\overline{S}(\Delta^\prime_n)}-I|< \frac{\varepsilon}{2} nlimS(Δn)I<2ε取定一个 n n n,又由一致连续性,存在 δ > 0 \delta>0 δ>0,当 ∣ x 1 − x 2 ∣ < δ |x_1-x_2|<\delta x1x2<δ时, ∣ f ( x 1 ) − f ( x 2 ) < ε 2 ( b − a ) |f(x_1)-f(x_2)<\frac{\varepsilon}{2(b-a)} f(x1)f(x2)<2(ba)ε,这样,当 λ ( Δ ) < δ \lambda(\Delta)<\delta λ(Δ)<δ时, ∣ ξ k ( n ) − M k ′ ( n ) ∣ < ε 2 ( b − a ) |\xi_k^{(n)}-M_k^{\prime(n)}|< \frac{\varepsilon}{2(b-a)} ξk(n)Mk(n)<2(ba)ε,于是 ∣ S ( Δ , f ) − S ‾ ( Δ n ′ ) ∣ < ε 2 |S(\Delta,f)-\overline{S}(\Delta^\prime_n)|<\frac{\varepsilon}{2} S(Δ,f)S(Δn)<2ε ∣ S ( Δ , f ) − I ∣ ≤ ∣ S ( Δ , f ) − S ‾ ( Δ n ′ ) ∣ + ∣ ξ k ( n ) − M k ′ ( n ) ∣ < ε |S(\Delta,f)-I|\le |S(\Delta,f)-\overline{S}(\Delta^\prime_n)| +|\xi_k^{(n)}-M_k^{\prime(n)}| < \varepsilon S(Δ,f)IS(Δ,f)S(Δn)+ξk(n)Mk(n)<ε

从正面过程可以知道,一致连续性对可积性来说是十分重要的一个性质。
对一般的函数,在每个小区间上不一定能取到最大值和最小值。然而,我们依然可以仿照以上证明过程,给出一个上和和下和的概念。
定义7.3 f ( x ) f(x) f(x)是闭区间 [ a , b ] [a,b] [a,b]的一个有界函数, Δ = { x 0 , x 1 , ⋯   , x n } \Delta=\{x_0,x_1,\cdots,x_n\} Δ={x0,x1,,xn} [ a , b ] [a,b] [a,b]的一个分划, a = x 0 < x 1 < ⋯ < x n = b a=x_0<x_1<\cdots<x_n=b a=x0<x1<<xn=b M i = sup ⁡ x i − 1 < x < x i f ( x ) , m i = inf ⁡ x i − 1 < x < x i f ( x ) M_i = \sup_{x_{i-1}<x<x_i}{f(x)},m_i=\inf_{x_{i-1}<x<x_i}{f(x)} Mi=supxi1<x<xif(x),mi=infxi1<x<xif(x),称和式 S ‾ ( Δ , f ) = ∑ i = 0 n M i ( x i − x i − 1 ) \overline{S}(\Delta,f) = \sum_{i=0}^n{M_i(x_i-x_{i-1})} S(Δ,f)=i=0nMi(xixi1) f f f [ a , b ] [a,b] [a,b]上的达布上和, S ‾ ( Δ , f ) = ∑ i = 0 n m i ( x i − x i − 1 ) \underline{S}(\Delta,f) = \sum_{i=0}^n{m_i(x_i-x_{i-1})} S(Δ,f)=i=0nmi(xixi1) f f f [ a , b ] [a,b] [a,b]上的达布下和

容易证明如下三条引理
引理7.1 f ( x ) f(x) f(x)是闭区间 [ a , b ] [a,b] [a,b]的一个有界函数, Δ = { x 0 , x 1 , ⋯   , x n } \Delta=\{x_0,x_1,\cdots,x_n\} Δ={x0,x1,,xn} [ a , b ] [a,b] [a,b]的一个分划, a = x 0 < x 1 < ⋯ < x n = b a=x_0<x_1<\cdots<x_n=b a=x0<x1<<xn=b S ‾ ( Δ , f ) \overline{S}(\Delta,f) S(Δ,f)是一切 f f f Δ \Delta Δ上的Riemann和的上确界, S ‾ ( Δ , f ) \underline{S}(\Delta,f) S(Δ,f)是一切 f f f Δ \Delta Δ上的Riemann和的下确界

引理7.2 f ( x ) f(x) f(x)是闭区间 [ a , b ] [a,b] [a,b]的一个有界函数, Δ 1 , Δ 2 \Delta_1,\Delta_2 Δ1,Δ2 [ a , b ] [a,b] [a,b]的两个分划,并且, Δ 1 ⊂ Δ 2 \Delta_1\subset\Delta_2 Δ1Δ2,则 S ‾ ( Δ 1 ) ≤ S ‾ ( Δ 2 ) ≤ S ‾ ( Δ 2 ) ≤ S ‾ ( Δ 1 ) \underline{S}(\Delta_1)\le\underline{S}(\Delta_2) \le\overline{S}(\Delta_2)\le\overline{S}(\Delta_1) S(Δ1)S(Δ2)S(Δ2)S(Δ1)

引理7.3 f ( x ) f(x) f(x)是闭区间 [ a , b ] [a,b] [a,b]的一个有界函数,则 f ( x ) f(x) f(x)的任意达布下和不超过任意达布上和,即使他们对应不同的分划

这样,一切达布上和有下界,一切达布上和有上界,那么达布上和有下确界,我们记为 I ‾ \overline{I} I,达布下和有上确界,我们记为 I ‾ \underline{I} I,并且 I ‾ ≤ I ‾ \underline{I}\le \overline{I} II。类似于连续函数可积性的证明过程,我们猜想: I ‾ = I ‾ = I \underline{I}= \overline{I}=I I=I=I时, I I I就是 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的积分。
定理7.2 有界函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积的充要条件是: lim ⁡ λ ( Δ ) → 0 [ S ‾ ( Δ , f ) − S ‾ ( Δ , f ) ] = 0 \lim_{\lambda(\Delta)\to 0}{[ \overline{S}(\Delta,f)-\underline{S}(\Delta,f) ]}=0 λ(Δ)0lim[S(Δ,f)S(Δ,f)]=0

证:
必要性,如果 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积,设 I = ∫ a b f ( x ) d x I=\int_a^b{f(x)dx} I=abf(x)dx
对任意的 ε > 0 \varepsilon>0 ε>0,存在 δ > 0 \delta>0 δ>0,对任意的分划 Δ \Delta Δ,当 λ ( Δ ) < δ \lambda(\Delta)<\delta λ(Δ)<δ时,任意 S ( Δ , f ) S(\Delta,f) S(Δ,f)都有: I − ε < S ( Δ , f ) < I + ε I-\varepsilon < S(\Delta,f) < I+\varepsilon Iε<S(Δ,f)<I+ε由引理7.2 S ‾ ( Δ , f ) ≤ I + ε \overline{S}(\Delta,f)\le I+\varepsilon S(Δ,f)I+ε S ‾ ( Δ , f ) ≥ I − ε \underline{S}(\Delta,f)\ge I-\varepsilon S(Δ,f)Iε就有 I − ε ≤ S ‾ ( Δ , f ) ≤ I ‾ ≤ I ‾ ≤ S ‾ ( Δ , f ) ≤ I + ε I-\varepsilon \le \underline{S}(\Delta,f) \le \underline{I} \le \overline{I} \le \overline{S}(\Delta,f) \le I+\varepsilon IεS(Δ,f)IIS(Δ,f)I+ε这样, S ‾ ( Δ , f ) − S ‾ ( Δ , f ) ≤ 2 ε \overline{S}(\Delta,f)-\underline{S}(\Delta,f) \le 2\varepsilon S(Δ,f)S(Δ,f)2ε这就说明了, lim ⁡ λ ( Δ ) → 0 [ S ‾ ( Δ , f ) − S ‾ ( Δ , f ) ] = 0 \lim_{\lambda(\Delta)\to 0}{[ \overline{S}(\Delta,f)-\underline{S}(\Delta,f) ]}=0 λ(Δ)0lim[S(Δ,f)S(Δ,f)]=0同时,由 ε \varepsilon ε的任意性,还可以得出 I ‾ = I ‾ \overline{I}=\underline{I} I=I的结论
充分性,如果 lim ⁡ λ ( Δ ) → 0 [ S ‾ ( Δ , f ) − S ‾ ( Δ , f ) ] = 0 \lim_{\lambda(\Delta)\to 0}{[ \overline{S}(\Delta,f)-\underline{S}(\Delta,f) ]}=0 λ(Δ)0lim[S(Δ,f)S(Δ,f)]=0由不等式: S ‾ ( Δ , f ) ≤ I ‾ ≤ I ‾ ≤ S ‾ ( Δ , f ) ≤ \underline{S}(\Delta,f) \le \underline{I} \le \overline{I} \le \overline{S}(\Delta,f) \le S(Δ,f)IIS(Δ,f)可以得出结论: I ‾ = I ‾ \overline{I}=\underline{I} I=I
I ‾ = I ‾ = I \overline{I}=\underline{I}=I I=I=I,对任意的分划 Δ \Delta Δ,就有 S ‾ ( Δ , f ) ≤ I ≤ S ‾ ( Δ , f ) \underline{S}(\Delta,f)\le I \le\overline{S}(\Delta,f) S(Δ,f)IS(Δ,f)对任意的Riemann和,都有 S ‾ ( Δ , f ) ≤ S ( Δ , f ) ≤ S ‾ ( Δ , f ) \underline{S}(\Delta,f)\le S(\Delta,f) \le \overline{S}(\Delta,f) S(Δ,f)S(Δ,f)S(Δ,f)这样, 0 < ∣ S ( Δ , f ) − I ∣ ≤ S ‾ ( Δ , f ) − S ‾ ( Δ , f ) 0<|S(\Delta,f)-I|\le \overline{S}(\Delta,f)-\underline{S}(\Delta,f) 0<S(Δ,f)IS(Δ,f)S(Δ,f)对任意的 ε > 0 \varepsilon>0 ε>0,存在 δ > 0 \delta>0 δ>0 λ ( Δ ) < δ \lambda(\Delta)<\delta λ(Δ)<δ时,都有 S ‾ ( Δ , f ) − S ‾ ( Δ , f ) < ε \overline{S}(\Delta,f)-\underline{S}(\Delta,f)<\varepsilon S(Δ,f)S(Δ,f)<ε这样,任意的 S ( Δ , f ) S(\Delta,f) S(Δ,f)都有 ∣ S ( Δ , f ) − I ∣ < ε |S(\Delta,f)-I|<\varepsilon S(Δ,f)I<ε这就证明了 ∫ a b f ( x ) d x = I \int_a^b{f(x)dx}=I abf(x)dx=I

从证明的过程也可以看出,如果可积时,一定有 I ‾ = I ‾ = ∫ a b f ( x ) d x \overline{I}=\underline{I}=\int_a^b{f(x)dx} I=I=abf(x)dx但上下积分相等能不能直接得到可积性呢?实际上,我们由如下的达布定理。

定理7.3(达布定理) f ( x ) f(x) f(x)是闭区间 [ a , b ] [a,b] [a,b]上的有界函数,则有 lim ⁡ λ ( Δ ) → 0 S ‾ ( Δ ) = I ‾ \lim_{\lambda(\Delta)\to 0 }{ \underline{S}(\Delta) = \underline{I} } λ(Δ)0limS(Δ)=I lim ⁡ λ ( Δ ) → 0 S ‾ ( Δ ) = I ‾ \lim_{\lambda(\Delta)\to 0 }{ \overline{S}(\Delta) = \overline{I} } λ(Δ)0limS(Δ)=I

由达布定理,就有如下推论:
推论7.1 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的有界函数,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上Riemann可积的充要条件是 I ‾ = I ‾ \underline{I}=\overline{I} I=I

下面我们证明定理7.3:

证: 我们仅证 lim ⁡ λ ( Δ ) → 0 S ‾ ( Δ ) = I ‾ \lim_{\lambda(\Delta)\to 0 }{ \overline{S}(\Delta) = \overline{I} } limλ(Δ)0S(Δ)=I lim ⁡ λ ( Δ ) → 0 S ‾ ( Δ ) = I ‾ \lim_{\lambda(\Delta)\to 0 }{ \underline{S}(\Delta) = \underline{I} } limλ(Δ)0S(Δ)=I的证明是类似的。
对任意 ε > 0 \varepsilon>0 ε>0,取由上积分的定义,存在分划列 { Δ 0 } \{\Delta_0\} {Δ0},满足 I ‾ ≤ S ‾ ( Δ 0 , f ) < I ‾ + ε 2 \overline{I}\le \overline{S}(\Delta_0,f) <\overline{I} +\frac{\varepsilon}{2} IS(Δ0,f)<I+2ε对任意的分划 Δ \Delta Δ,令 Δ 0 ′ = Δ 0 ∪ Δ \Delta^\prime_0=\Delta_0\cup\Delta Δ0=Δ0Δ,就有
I ‾ ≤ S ‾ ( Δ 0 ′ , f ) ≤ S ‾ ( Δ 0 , f ) < I ‾ + ε 2 \overline{I}\le \overline{S}(\Delta^\prime_0,f)\le \overline{S}(\Delta_0,f) < \overline{I} + \frac{\varepsilon}{2} IS(Δ0,f)S(Δ0,f)<I+2ε只要考察 ∣ S ‾ ( Δ , f ) − S ‾ ( Δ 0 ′ , f ) ∣ |\overline{S}(\Delta,f)-\overline{S}(\Delta^\prime_0,f)| S(Δ,f)S(Δ0,f)即可
实际上,对 Δ \Delta Δ的每一个小区间,如果其中没有 Δ n \Delta_n Δn的分点, Δ \Delta Δ Δ n ′ \Delta^\prime_n Δn对应的项没有差距,差别就体现在插入了 Δ n \Delta_n Δn分点的小区间上。
不妨设 ∣ f ( x ) ∣ ≤ M > 0 |f(x)|\le M>0 f(x)M>0,如果某个小区间插入了一个分点,那么对应的上确界之差不超过 2 M 2M 2M,设 N N N Δ n \Delta_n Δn的分点个数( N > 2 N>2 N>2)。那么,如果 Δ \Delta Δ的某个区间完全含在 Δ 0 \Delta_0 Δ0的某个区间内,那么, Δ 0 ′ \Delta_0^\prime Δ0内的某个区间与 Δ \Delta Δ的这个区间是相同的,不会对达布上和有影响,对达布上和有影响的只有插入了 Δ 0 \Delta_0 Δ0分点的区间,最多只有 N − 2 N-2 N2 Δ \Delta Δ的区间对达布上和影响,假设 Δ \Delta Δ的某个区间 [ x k − 1 , x k ] [x_{k-1},x_k] [xk1,xk]中插入了一个分点 c ( c ∈ ( x k − 1 , x k ) ) c(c\in(x_{k-1},x_k)) c(c(xk1,xk)),设 f ( x ) f(x) f(x) [ x k − 1 , c ] [x_{k-1},c] [xk1,c]上的上确界为 M 1 M_1 M1,在 [ c , x k ] [c,x_k] [c,xk]上上确界为 M 2 M_2 M2,在 [ x k − 1 , x k ] [x_{k-1},x_k] [xk1,xk]的上确界为 M 0 M_0 M0,从而 ∣ M 1 ( c − x k − 1 ) + M 2 ( x k − c ) − M 0 ( x k − x k − 1 ) ∣ ≤ 2 M ( x k − x k − 1 ) ≤ 2 M λ ( Δ ) \begin{aligned} &|M_1(c-x_{k-1})+M_2(x_k-c)-M_0(x_k-x_{k-1})|\le 2M(x_k-x_{k-1}) \\\le &2M\lambda(\Delta) \end{aligned} M1(cxk1)+M2(xkc)M0(xkxk1)2M(xkxk1)2Mλ(Δ)从而 ∣ S ‾ ( Δ , f ) − S ‾ ( Δ 0 ′ , f ) ∣ ≤ 2 M ( N − 2 ) λ ( Δ ) \begin{aligned} |\overline{S}(\Delta,f)-\overline{S}(\Delta_0^\prime,f)|\le 2M(N-2)\lambda(\Delta) \end{aligned} S(Δ,f)S(Δ0,f)2M(N2)λ(Δ) λ ( Δ ) < ε 4 M ( N − 2 ) \displaystyle \lambda(\Delta)<\frac{\varepsilon}{4M(N-2)} λ(Δ)<4M(N2)ε ∣ S ‾ ( Δ , f ) − I ‾ ∣ ≤ ∣ S ‾ ( Δ , f ) − S ‾ ( Δ 0 ′ , f ) ∣ + ∣ S ‾ ( Δ 0 ′ , f ) − I ‾ ∣ < ε \begin{aligned} &|\overline{S}(\Delta,f)-\overline{I}|\\ \le & |\overline{S}(\Delta,f)-\overline{S}(\Delta_0^\prime,f)|+|\overline{S}(\Delta_0^\prime,f)-\overline{I}|<\varepsilon \end{aligned} S(Δ,f)IS(Δ,f)S(Δ0,f)+S(Δ0,f)I<ε因此 lim ⁡ λ ( Δ ) → 0 S ‾ ( Δ , f ) = I ‾ \displaystyle \lim_{\lambda(\Delta)\to 0}\overline{S}(\Delta,f)=\overline{I} λ(Δ)0limS(Δ,f)=I

可积函数类

定积分的性质

下面,我们来证明定积分的一些性质。
定理7.4(有界性) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积,那么 f ( x ) f(x) f(x)就在 [ a , b ] [a,b] [a,b]上有界。

证:
∫ a b f ( x ) d x = I \int_a^b{f(x)dx}=I abf(x)dx=I,反证法证明,如果 f ( x ) f(x) f(x)无界,那么任取分划 Δ : a = x 0 < x 1 < ⋯ < x n = b \Delta:a=x_0<x_1<\cdots<x_n=b Δ:a=x0<x1<<xn=b,必然有一个小区间无界,设就是 [ x 0 , x 1 ] [x_0,x_1] [x0,x1]
可以取得 ξ n ∈ [ x 0 , x 1 ] \xi_n\in[x_0,x_1] ξn[x0,x1],使得 ∣ f ( ξ n ) ∣ > n |f(\xi_n)|>n f(ξn)>n,这样,无论 λ ( Δ ) \lambda(\Delta) λ(Δ)有多小,都可以取得 ξ n ∈ [ x 0 , x 1 ] \xi_n\in[x_0,x_1] ξn[x0,x1],在其他区间的取法给定的条件下,Riemann和可以任意大,与可积矛盾

因此,对积分的讨论都是建立在有界函数上的。下面我们还要证明如下的定理。
定理7.5 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积,则 ∣ f ( x ) ∣ |f(x)| f(x) [ a , b ] [a,b] [a,b]上可积

证:
这是因为对任意的 x 1 , x 2 ∈ [ a , b ] x_1,x_2\in[a,b] x1,x2[a,b],都有 ∣ ∣ f ( x 1 ) ∣ − ∣ f ( x 2 ) ∣ ∣ ≤ ∣ f ( x 1 ) − f ( x 2 ) ∣ ||f(x_1)|-|f(x_2)||\le|f(x_1)-f(x_2)| f(x1)f(x2)f(x1)f(x2)对任意的分划 Δ : a = x 0 < x 1 < ⋯ < x n = n \Delta:a=x_0<x_1<\cdots<x_n=n Δ:a=x0<x1<<xn=n 0 ≤ S ‾ ( Δ , ∣ f ∣ ) − S ‾ ( Δ , ∣ f ∣ ) ≤ S ‾ ( Δ , f ) − S ‾ ( Δ , f ) 0\le\overline{S}(\Delta,|f|)-\underline{S}(\Delta,|f|) \le \overline{S}(\Delta,f)-\underline{S}(\Delta,f) 0S(Δ,f)S(Δ,f)S(Δ,f)S(Δ,f) λ ( Δ ) → 0 \lambda(\Delta)\to 0 λ(Δ)0,就有
lim ⁡ λ ( Δ ) → 0 S ‾ ( Δ , ∣ f ∣ ) − S ‾ ( Δ , ∣ f ∣ ) = 0 \lim_{\lambda(\Delta)\to 0} { \overline{S}(\Delta,|f|)-\underline{S}(\Delta,|f|) } =0 λ(Δ)0limS(Δ,f)S(Δ,f)=0

类似地,可以证明:
定理7.6 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]的任意子区间可积
证明比较简单,这里就不写出具体的证明过程了。
下面,我们就可以给出Riemann积分的一些性质。
定理7.7
(1)(线性性质) f ( x ) f(x) f(x) g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上Riemann可积,则对任意的实数 c , d c,d c,d c f ( x ) + d g ( x ) cf(x)+dg(x) cf(x)+dg(x) [ a , b ] [a,b] [a,b]上Riemann可积,并且 ∫ a b c f ( x ) + d g ( x ) d x = c ∫ a b f ( x ) d x + d ∫ a b g ( x ) d x \int_a^b{cf(x)+dg(x)dx} =c\int_a^b{f(x)dx}+d\int_a^b{g(x)dx} abcf(x)+dg(x)dx=cabf(x)dx+dabg(x)dx(2)(不等式性质) f ( x ) f(x) f(x) g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上Riemann可积,并且 f ( x ) ≤ g ( x ) , ∀ x ∈ [ a , b ] f(x)\le g(x) ,\forall x \in [a,b] f(x)g(x),x[a,b],则 ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x \int_a^b{f(x)dx}\le \int_a^b{g(x)dx} abf(x)dxabg(x)dx(3)(绝对值性质) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上Riemann可积,则 ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int_a^b{f(x)dx}|\le\int_a^b{|f(x)|dx} abf(x)dxabf(x)dx(4)(区间可加性)对任意的 a < c < b a<c<b a<c<b f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积的充要条件是 f ( x ) f(x) f(x) [ a , c ] [a,c] [a,c] [ c , b ] [c,b] [c,b]上都可积,并且 ∫ a c f ( x ) d x + ∫ c b f ( x ) d x = ∫ a b f ( x ) d x \int_a^c{f(x)dx} + \int_c^b{f(x)dx} =\int_a^b{f(x)dx} acf(x)dx+cbf(x)dx=abf(x)dx

证:
(1)对任意的分划 Δ : a = x 0 < x 1 < ⋯   , x n = b \Delta:a=x_0<x_1<\cdots,x_n=b Δ:a=x0<x1<,xn=b,对任意的 ξ k ∈ [ x k − 1 , x k ] ( k = 1 , ⋯   , n ) \xi_k\in[x_{k-1},x_k](k=1,\cdots,n) ξk[xk1,xk](k=1,,n),有 ∣ ∑ k = 1 n [ c f ( ξ n ) + d g ( ξ n ) ( x k − x k − 1 ) ] − c ∫ a b f ( x ) d x − d ∫ a b g ( x ) d x ∣ ≤ ∣ c ∣ ∣ ∑ k = 1 n f ( ξ n ) ( x k − x k − 1 ) − ∫ a b f ( x ) d x ∣ + ∣ d ∣ ∣ ∑ k = 1 n g ( ξ n ) ( x k − x k − 1 ) − ∫ a b g ( x ) d x ∣ |\sum_{k=1}^{n}[cf(\xi_n)+dg(\xi_n)(x_{k}-x_{k-1})]-c\int_a^b{f(x)dx}-d\int_a^b{g(x)dx}|\le\\ |c||\sum_{k=1}^n{f(\xi_n)(x_k-x_{k-1})}-\int_a^b{f(x)dx}| +|d||\sum_{k=1}^n{g(\xi_n)(x_k-x_{k-1})}-\int_a^b{g(x)dx}| k=1n[cf(ξn)+dg(ξn)(xkxk1)]cabf(x)dxdabg(x)dxck=1nf(ξn)(xkxk1)abf(x)dx+dk=1ng(ξn)(xkxk1)abg(x)dx对任意的 ε > 0 \varepsilon>0 ε>0,存在 δ 1 > 0 \delta_1>0 δ1>0 λ ( Δ ) < δ 1 \lambda(\Delta)<\delta_1 λ(Δ)<δ1时,有 ∣ ∑ k = 1 n f ( ξ n ) ( x k − x k − 1 ) − ∫ a b f ( x ) d x ∣ < ε 2 ∣ c ∣ |\sum_{k=1}^n{f(\xi_n)(x_k-x_{k-1})}-\int_a^b{f(x)dx}|<\frac{\varepsilon}{2|c|} k=1nf(ξn)(xkxk1)abf(x)dx<2cε又存在 δ 2 > 0 \delta_2>0 δ2>0 λ ( Δ ) < δ 2 \lambda(\Delta)<\delta_2 λ(Δ)<δ2时,有 ∣ ∑ k = 1 n g ( ξ n ) ( x k − x k − 1 ) − ∫ a b g ( x ) d x ∣ < ε 2 ∣ d ∣ |\sum_{k=1}^n{g(\xi_n)(x_k-x_{k-1})}-\int_a^b{g(x)dx}|<\frac{\varepsilon}{2|d|} k=1ng(ξn)(xkxk1)abg(x)dx<2dε因此,当 λ ( Δ ) < min ⁡ ( δ 1 , δ 2 ) \lambda(\Delta)<\min(\delta_1,\delta_2) λ(Δ)<min(δ1,δ2)时,就有 ∣ ∑ k = 1 n [ c f ( ξ n ) + d g ( ξ n ) ( x k − x k − 1 ) ] − c ∫ a b f ( x ) d x − d ∫ a b g ( x ) d x ∣ < ε |\sum_{k=1}^{n}[cf(\xi_n)+dg(\xi_n)(x_{k}-x_{k-1})]-c\int_a^b{f(x)dx}-d\int_a^b{g(x)dx}|<\varepsilon k=1n[cf(ξn)+dg(ξn)(xkxk1)]cabf(x)dxdabg(x)dx<ε(2)(3)的证明比较简单,省略
下面证明(4):只证明前一个命题,后一个命题比较容易,而前一命题只需要证明充分性
实际上,由达布定理,我们只需要取得一个分划列 { Δ n } \{\Delta_n\} {Δn} λ ( Δ n ) → 0 \lambda(\Delta_n)\to 0 λ(Δn)0,有 S ‾ ( Δ n ) − S ‾ ( Δ n ) → 0 \overline{S}(\Delta_n)-\underline{S}(\Delta_n)\to 0 S(Δn)S(Δn)0就可以证得可积性,而这可以通过分别取 [ a , c ] [a,c] [a,c] [ c , b ] [c,b] [c,b]的分划列 { Δ n 1 } \{\Delta^{1}_n\} {Δn1} { Δ n 2 } \{\Delta^2_n\} {Δn2},再合并成 { Δ n } \{\Delta_n\} {Δn}即可证得结论。

微积分基本定理

微积分基本定理

上一章,我们把微分的逆运算称为“不定积分”,但从定积分的定义来看,“不定积分”离真正的“积分”的定义还相去甚远。本节要证明的微积分基本定理,正是搭起微分和积分的一座桥梁。
定理7.8(微积分基本定理) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积且原函数存在,原函数为 F ( x ) F(x) F(x),则 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^b{f(x)dx} = F(b)-F(a) abf(x)dx=F(b)F(a)

证:对 [ a , b ] [a,b] [a,b]的任意分划 Δ : a = x 0 < x 1 < ⋯ < x n = b \Delta:a=x_0<x_1<\cdots<x_n=b Δ:a=x0<x1<<xn=b,有 F ( b ) − F ( a ) = ∑ k = 1 n F ( x k ) − F ( x k − 1 ) (1) \tag{1} F(b)-F(a)=\sum_{k=1}^n{F(x_k)-F(x_{k-1})} F(b)F(a)=k=1nF(xk)F(xk1)(1)由拉格朗日中值定理,存在 ξ k ∈ ( x k − 1 , x k ) \xi_k \in (x_{k-1},x_k) ξk(xk1,xk),满足 F ( x k ) − F ( x k − 1 ) = f ( ξ k ) ( x k − x k − 1 ) F(x_k)-F(x_{k-1})=f(\xi_k)(x_k-x_{k-1}) F(xk)F(xk1)=f(ξk)(xkxk1) k = 1 , ⋯   , n k=1,\cdots,n k=1,,n,代入(1)中,有 F ( b ) − F ( a ) = ∑ k = 1 n f ( ξ k ) ( x k − x k − 1 ) F(b)-F(a)=\sum_{k=1}^n{f(\xi_k)(x_k-x_{k-1})} F(b)F(a)=k=1nf(ξk)(xkxk1)再令 λ ( Δ ) → 0 \lambda(\Delta)\to 0 λ(Δ)0,按照定积分的定义,有
∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^b{f(x)dx} = F(b)-F(a) abf(x)dx=F(b)F(a)

微积分基本定理将原函数和积分联系在一起,而原函数是微分的逆运算,因此,在原函数存在的情况下,就为定积分的计算提供了一种手段。

变上限积分的性质

微积分基本定理要求 f ( x ) f(x) f(x)可积,可积性问题由达布理论可以解决。还要求 f ( x ) f(x) f(x)原函数存在,原函数存在性问题,我们至今没有介绍,现在,我们利用定积分,可以回答这个问题。
定理7.9
(1) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积,那么变上限积分 ∫ a x f ( x ) d x \int_a^x{f(x)dx} axf(x)dx [ a , b ] [a,b] [a,b]上的连续函数
(2)如果 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,那么变上限积分 ∫ a x f ( x ) d x \int_a^x{f(x)dx} axf(x)dx [ a , b ] [a,b] [a,b]上可导,并且导函数为 f ( x ) f(x) f(x)

利用定理7.9的结论(2),就有如下推论:
定理7.10(原函数存在定理) 闭区间上的连续函数都存在原函数

在证明定理7.9之前,我们先证明积分第一中值定理:
定理7.11(积分第一中值定理) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,可积函数 g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]非负,则存在 ξ ∈ [ a , b ] \xi\in[a,b] ξ[a,b],使得 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \int_a^b{f(x)g(x)dx}=f(\xi)\int_{a}^b{g(x)dx} abf(x)g(x)dx=f(ξ)abg(x)dx

证:
f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的最大值和最小值分别为 M M M m m m,由积分的不等式性质,有 m ∫ a b g ( x ) d x ≤ ∫ a b f ( x ) g ( x ) d x ≤ M ∫ a b g ( x ) d x m\int_{a}^b{g(x)dx}\le\int_a^b{f(x)g(x)dx}\le M\int_{a}^b{g(x)dx} mabg(x)dxabf(x)g(x)dxMabg(x)dx不妨设 ∫ a b g ( x ) d x > 0 \int_{a}^b{g(x)dx}>0 abg(x)dx>0,从而 m ≤ ∫ a b f ( x ) g ( x ) d x ∫ a b g ( x ) d x ≤ M m\le\frac{\int_a^b{f(x)g(x)dx}}{\int_{a}^b{g(x)dx}}\le M mabg(x)dxabf(x)g(x)dxM再由连续函数的介值定理,存在 ξ ∈ [ a , b ] \xi\in[a,b] ξ[a,b],满足: f ( ξ ) = ∫ a b f ( x ) g ( x ) d x ∫ a b g ( x ) d x f(\xi)=\frac{\int_a^b{f(x)g(x)dx}}{\int_{a}^b{g(x)dx}} f(ξ)=abg(x)dxabf(x)g(x)dx

下面我们证明定理7.9:

证:(1) ∣ ∫ a x + Δ x f ( x ) d x − ∫ a x f ( x ) d x ∣ ≤ ∣ ∫ x x + Δ x f ( x ) d x ∣ ≤ ∫ x x + Δ x ∣ f ( x ) ∣ d x |\int_a^{x+\Delta x}{f(x)dx}-\int_a^x{f(x)dx}|\le \\|\int_x^{x+\Delta x}{f(x)dx}|\le \int_x^{x+\Delta x}{|f(x)|dx} ax+Δxf(x)dxaxf(x)dxxx+Δxf(x)dxxx+Δxf(x)dx f ( x ) f(x) f(x)可积, f ( x ) f(x) f(x)有界,设 ∣ f ( x ) ∣ ≤ M > 0 |f(x)|\le M>0 f(x)M>0,则 ∣ ∫ a x + Δ x f ( x ) d x − ∫ a x f ( x ) d x ∣ ≤ M ∣ Δ x ∣ |\int_a^{x+\Delta x}{f(x)dx}-\int_a^x{f(x)dx}|\le M|\Delta x| ax+Δxf(x)dxaxf(x)dxMΔx对任意的 ε > 0 \varepsilon>0 ε>0,当 ∣ Δ x ∣ < ε M |\Delta x|<\frac{\varepsilon}{M} Δx<Mε时,就有 ∣ ∫ a x + Δ x f ( x ) d x − ∫ a x f ( x ) d x ∣ < ε |\int_a^{x+\Delta x}{f(x)dx}-\int_a^x{f(x)dx}| <\varepsilon ax+Δxf(x)dxaxf(x)dx<ε(2) lim ⁡ Δ x → 0 ∫ x x + Δ x f ( x ) d x Δ x = lim ⁡ Δ x → 0 f ( ξ ) Δ x Δ x = lim ⁡ Δ x → 0 f ( ξ ) = f ( x ) \lim_{\Delta x\to 0}{\frac{\int_x^{x+\Delta x}{f(x)dx}}{\Delta x}}\\ =\lim_{\Delta x\to 0}\frac{f(\xi)\Delta x}{\Delta x} =\lim_{\Delta x\to 0}{f(\xi)} =f(x) Δx0limΔxxx+Δxf(x)dx=Δx0limΔxf(ξ)Δx=Δx0limf(ξ)=f(x)以上等式中的 ξ \xi ξ介于 x x x x + Δ x x+\Delta x x+Δx之间

定积分的换元积分法和分部积分法

由微积分基本定理,我们就可以把求原函数的换元积分法和分部积分法,推广到定积分的计算当中。
定理7.12 ϕ ( t ) \phi(t) ϕ(t) [ a , b ] [a,b] [a,b]上可导, f ( ϕ ( t ) ) ϕ ′ ( t ) f(\phi(t))\phi^\prime(t) f(ϕ(t))ϕ(t) [ a , b ] [a,b] [a,b]上可积, f ( x ) f(x) f(x) [ ϕ ( a ) , ϕ ( b ) ] [\phi(a),\phi(b)] [ϕ(a),ϕ(b)]上可积且原函数存在,则 ∫ a b f ( ϕ ( t ) ) ϕ ′ ( t ) d t = ∫ ϕ ( a ) ϕ ( b ) f ( x ) d x \int_a^b{f(\phi(t))\phi^\prime(t)dt} =\int_{\phi(a)}^{\phi(b)}{f(x)dx} abf(ϕ(t))ϕ(t)dt=ϕ(a)ϕ(b)f(x)dx

证:
由于 f ( x ) f(x) f(x) [ ϕ ( a ) , ϕ ( b ) ] [\phi(a),\phi(b)] [ϕ(a),ϕ(b)]上的原函数存在,设为 F ( x ) F(x) F(x)
F ( ϕ ( t ) ) F(\phi(t)) F(ϕ(t)) f ( ϕ ( t ) ) ϕ ′ ( t ) f(\phi(t))\phi^\prime(t) f(ϕ(t))ϕ(t) [ a , b ] [a,b] [a,b]的原函数。
由微积分基本定理,有 ∫ a b f ( ϕ ( t ) ) ϕ ′ ( t ) d t = F ( ϕ ( b ) ) − F ( ϕ ( a ) ) \int_a^b{f(\phi(t))\phi^\prime(t)dt} =F(\phi(b))-F(\phi(a)) abf(ϕ(t))ϕ(t)dt=F(ϕ(b))F(ϕ(a)) ∫ ϕ ( a ) ϕ ( b ) f ( x ) d x = F ( ϕ ( b ) ) − F ( ϕ ( a ) ) \int_{\phi(a)}^{\phi(b)}{f(x)dx} =F(\phi(b))-F(\phi(a)) ϕ(a)ϕ(b)f(x)dx=F(ϕ(b))F(ϕ(a))因此, ∫ a b f ( ϕ ( t ) ) ϕ ′ ( t ) d t = ∫ ϕ ( a ) ϕ ( b ) f ( x ) d x \int_a^b{f(\phi(t))\phi^\prime(t)dt} =\int_{\phi(a)}^{\phi(b)}{f(x)dx} abf(ϕ(t))ϕ(t)dt=ϕ(a)ϕ(b)f(x)dx

定理7.13 如果 x = ϕ ( t ) x=\phi(t) x=ϕ(t)的导数恒为正, f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积, f ( ϕ ( t ) ) ϕ ′ ( t ) f(\phi(t))\phi^\prime(t) f(ϕ(t))ϕ(t) [ ϕ − 1 ( a ) , ϕ − 1 ( b ) ] [\phi^{-1}(a),\phi^{-1}(b)] [ϕ1(a),ϕ1(b)]上存在原函数且可积,则
∫ a b f ( x ) d x = ∫ ϕ − 1 ( a ) ϕ − 1 ( b ) f ( ϕ ( t ) ) ϕ ′ ( t ) d t \int_a^b{f(x)dx}=\int_{\phi^{-1}(a)}^{\phi^{-1}(b)}{ f(\phi(t))\phi^\prime(t)dt } abf(x)dx=ϕ1(a)ϕ1(b)f(ϕ(t))ϕ(t)dt

定理7.14 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)可导, g ( x ) g(x) g(x)原函数为 G ( x ) G(x) G(x) f ′ ( x ) G ( x ) f^\prime(x)G(x) f(x)G(x) [ a , b ] [a,b] [a,b]上的原函数存在且可积,则 ∫ a b f ( x ) g ( x ) d x = f ( b ) G ( b ) − f ( a ) G ( a ) − ∫ a b f ′ ( x ) G ( x ) d x \int_a^b{f(x)g(x)dx} =f(b)G(b)-f(a)G(a)-\int_a^b{f^\prime(x)G(x)dx} abf(x)g(x)dx=f(b)G(b)f(a)G(a)abf(x)G(x)dx
证明是类似的,这里不证。

积分第二中值定理

积分第二中值定理在反常积分的证明中十分关键,我们先给出积分第二中值定理的内容。
定理7.15(积分第二中值定理) g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上可积
(1) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上单调上升, f ( x ) ≥ 0 f(x)\ge0 f(x)0,则存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b] ∫ a b f ( x ) g ( x ) d x = f ( b ) ∫ ξ b g ( x ) d x \int_a^b{f(x)g(x)dx} =f(b)\int_\xi^b{g(x)dx} abf(x)g(x)dx=f(b)ξbg(x)dx(2) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上单调下降, f ( x ) ≥ 0 f(x)\ge 0 f(x)0,则存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b]
∫ a b f ( x ) g ( x ) d x = f ( a ) ∫ a ξ g ( x ) d x \int_a^b{f(x)g(x)dx} =f(a)\int_a^\xi{g(x)dx} abf(x)g(x)dx=f(a)aξg(x)dx(3) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上单调,则存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b] ∫ a b f ( x ) g ( x ) d x = f ( a ) ∫ a ξ g ( x ) d x + f ( b ) ∫ ξ b g ( x ) d x \int_a^b{f(x)g(x)dx} =f(a)\int_a^\xi{g(x)dx}+f(b)\int_\xi^b{g(x)dx} abf(x)g(x)dx=f(a)aξg(x)dx+f(b)ξbg(x)dx

由于定理的条件十分宽松,因此,我们不妨把条件加强给出一个简单的证明,再从这个证明中寻找证明的思路。
假设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上单调上升且有连续导数, g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]连续,令 G ( x ) = ∫ x b g ( t ) d t G(x)=\int_x^b{g(t)dt} G(x)=xbg(t)dt G ′ ( x ) = − g ( x ) G^\prime(x) = -g(x) G(x)=g(x),由分部积分法: ∫ a b f ( x ) g ( x ) d x = − ∫ a b f ( x ) d G ( x ) = − f ( x ) G ( x ) ∣ a b + ∫ a b f ′ ( x ) G ( x ) d x = f ( a ) ∫ a b g ( t ) d t + ∫ a b f ′ ( x ) G ( x ) d x (3) \tag{3} \int_a^b{f(x)g(x)dx}=-\int_a^b{f(x)dG(x)} =-f(x)G(x)|_a^b + \int_a^b{f^\prime(x)G(x)dx}\\ =f(a)\int_a^b{g(t)dt} + \int_a^b{f^\prime(x)G(x)dx} abf(x)g(x)dx=abf(x)dG(x)=f(x)G(x)ab+abf(x)G(x)dx=f(a)abg(t)dt+abf(x)G(x)dx(3) M , m M,m M,m G ( x ) G(x) G(x) [ a , b ] [a,b] [a,b]上的最大值和最小值,那么就有 m ∫ a b f ′ ( x ) d x ≤ ∫ a b f ′ ( x ) G ( x ) d x M ∫ a b f ′ ( x ) d x m\int_a^b{f^\prime(x)dx}\le \int_a^b{f^\prime(x)G(x)dx} M \int_a^b{f^\prime(x)dx} mabf(x)dxabf(x)G(x)dxMabf(x)dx m ≤ ∫ a b f ′ ( x ) G ( x ) d x f ( b ) − f ( a ) ≤ M m\le \frac{\int_a^b{f^\prime(x)G(x)dx}}{f(b)-f(a)} \le M mf(b)f(a)abf(x)G(x)dxM再由连续函数的介值定理,存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b] G ( ξ ) = ∫ a b f ′ ( x ) G ( x ) d x f ( b ) − f ( a ) G(\xi) = \frac{\int_a^b{f^\prime(x)G(x)dx}}{f(b)-f(a)} G(ξ)=f(b)f(a)abf(x)G(x)dx
再代入到(3)中,就可以得到 ∫ a b f ( x ) g ( x ) d x = f ( a ) ∫ a ξ g ( x ) d x + f ( b ) ∫ ξ b g ( x ) d x \int_a^b{f(x)g(x)dx} =f(a)\int_a^\xi{g(x)dx}+f(b)\int_\xi^b{g(x)dx} abf(x)g(x)dx=f(a)aξg(x)dx+f(b)ξbg(x)dx

虽然 g ( x ) g(x) g(x)不一定连续,但是只要 g ( x ) g(x) g(x)可积,函数 G ( x ) = ∫ a x g ( t ) d t G(x)=\int_a^x{g(t)dt} G(x)=axg(t)dt就是连续的,不妨设 f ( x ) f(x) f(x)单调下降且非负,并且设 f ( a ) > 0 f(a)>0 f(a)>0,只要我们证明了 m ≤ ∫ a b f ( x ) g ( x ) d x f ( a ) ≤ M m\le\frac{\int_a^b{f(x)g(x)dx}}{f(a)}\le M mf(a)abf(x)g(x)dxM在利用连续函数的介值定理,就能证得结论(2),只要证得结论(2) ∫ a b f ( x ) g ( x ) d x = ∫ a b [ f ( x ) − f ( a ) ] g ( x ) d x + f ( a ) ∫ a b g ( x ) d x \int_a^b{f(x)g(x)dx} = \int_a^b{[f(x)-f(a)]g(x)dx}+f(a)\int_a^b{g(x)dx} abf(x)g(x)dx=ab[f(x)f(a)]g(x)dx+f(a)abg(x)dx再套用结论(2),就能证得结论(3)的单调下降情形,也就是说,我们只需要证明结论(1)和(2),就能证得结论(3)。

在一般的条件下,我们不能用分部积分法,只能借助定积分的定义进行证明,在证明之前,我们先给出阿贝尔变换。
引理7.4(阿贝尔变换) a 1 , ⋯   , a n a_1,\cdots,a_n a1,,an b 1 , ⋯   , b n b_1,\cdots,b_n b1,,bn是实数, B k = ∑ i = 1 k b k B_k=\sum_{i=1}^k{b_k} Bk=i=1kbk,则 ∑ k = 1 n a k b k = a n B n + ∑ k = 1 n − 1 ( a k − a k + 1 ) B k \sum_{k=1}^n{a_k b_k}=a_nB_n+\sum_{k=1}^{n-1}{(a_k-a_{k+1})B_k} k=1nakbk=anBn+k=1n1(akak+1)Bk

下面我们用阿贝尔变换来证明结论(2)

证:
f ( x ) f(x) f(x)单调下降且 f ( b ) ≥ 0 f(b)\ge 0 f(b)0,对任意的 [ a , b ] [a,b] [a,b]的分划 Δ \Delta Δ,其中 Δ : a = x 0 < x 1 < ⋯ < x n = b \Delta:a=x_0<x_1<\cdots<x_n=b Δ:a=x0<x1<<xn=b,则 ∫ a b f ( t ) g ( t ) d t = lim ⁡ λ ( Δ ) → 0 ∑ k = 0 n ∫ x k − 1 x k f ( t ) g ( t ) d t \int_a^b{f(t)g(t)dt}=\lim_{\lambda(\Delta)\to 0} {\sum_{k=0}^n\int_{x_{k-1}}^{x_k}{f(t)g(t)dt}} abf(t)g(t)dt=λ(Δ)0limk=0nxk1xkf(t)g(t)dt ∣ g ( x ) ∣ ≤ M > 0 |g(x)|\le M>0 g(x)M>0 ∣ ∑ k = 1 n ∫ x k − 1 x k f ( t ) g ( t ) d t − ∑ k = 1 n f ( x k − 1 ) ∫ x k − 1 x k g ( t ) d t ∣ ≤ ∑ k = 1 n ∫ x k − 1 x k ∣ f ( t ) − f ( x k − 1 ) ∣ ∣ g ( t ) ∣ d t ≤ M ∑ k = 1 n w k ( x k − x k − 1 ) |\sum_{k=1}^n{\int_{x_{k-1}}^{x_k}{f(t)g(t)dt}}- \sum_{k=1}^n{f(x_{k-1})\int_{x_{k-1}}^{x_k}{g(t)dt}}|\le \sum_{k=1}^{n}\int_{x_{k-1}}^{x_k}{|f(t)-f(x_{k-1})||g(t)|dt}\\\le M\sum_{k=1}^n{w_k(x_k-x_{k-1})} k=1nxk1xkf(t)g(t)dtk=1nf(xk1)xk1xkg(t)dtk=1nxk1xkf(t)f(xk1)g(t)dtMk=1nwk(xkxk1) λ ( Δ ) → 0 \lambda(\Delta)\to 0 λ(Δ)0时, ∣ ∑ k = 1 n ∫ x k − 1 x k f ( t ) g ( t ) d t − ∑ k = 1 n f ( x k − 1 ) ∫ x k − 1 x k g ( t ) d t ∣ → 0 |\sum_{k=1}^n{\int_{x_{k-1}}^{x_k}{f(t)g(t)dt}}- \sum_{k=1}^n{f(x_{k-1})\int_{x_{k-1}}^{x_k}{g(t)dt}}|\to 0 k=1nxk1xkf(t)g(t)dtk=1nf(xk1)xk1xkg(t)dt0因此,就有 ∫ a b f ( t ) g ( t ) d t = lim ⁡ λ ( Δ ) → 0 ∑ k = 1 n f ( x k − 1 ) ∫ x k − 1 x k g ( t ) d t \int_a^b{f(t)g(t)dt}=\lim_{\lambda(\Delta)\to 0} \sum_{k=1}^n{f(x_{k-1})\int_{x_{k-1}}^{x_k}{g(t)dt}} abf(t)g(t)dt=λ(Δ)0limk=1nf(xk1)xk1xkg(t)dt由阿贝尔变换: ∑ k = 1 n f ( x k − 1 ) ∫ x k − 1 x k g ( t ) d t = ∑ k = 1 n − 1 [ f ( x k − 1 ) − f ( x k ) ] ∫ a x k g ( t ) d t + f ( x n − 1 ) ∫ a b g ( t ) d t \sum_{k=1}^n{f(x_{k-1})\int_{x_{k-1}}^{x_k}{g(t)dt}}\\ =\sum_{k=1}^{n-1}[f(x_{k-1})-f(x_k)]\int_a^{x_k}{g(t)dt} +f(x_{n-1})\int_a^b{g(t)dt} k=1nf(xk1)xk1xkg(t)dt=k=1n1[f(xk1)f(xk)]axkg(t)dt+f(xn1)abg(t)dt G ( x ) = ∫ a x g ( t ) d t G(x)=\int_a^x{g(t)dt} G(x)=axg(t)dt,设 M , m M,m M,m G ( x ) G(x) G(x)的最大值和最小值,就有 f ( a ) m = m [ f ( x n − 1 ) + ∑ k = 1 n − 1 ( f ( x k − 1 ) − f ( x k ) ) ] ≤ ∑ k = 1 n f ( x k − 1 ) ∫ x k − 1 x k g ( t ) d t ≤ M f ( a ) f(a)m = m[f(x_{n-1})+\sum_{k=1}^{n-1}(f(x_{k-1})-f(x_k))] \le \sum_{k=1}^n{f(x_{k-1})\int_{x_{k-1}}^{x_k}{g(t)dt}} \le Mf(a) f(a)m=m[f(xn1)+k=1n1(f(xk1)f(xk))]k=1nf(xk1)xk1xkg(t)dtMf(a)因此,有 f ( a ) m ≤ ∫ a b f ( x ) g ( x ) d x ≤ f ( a ) M f(a)m \le \int_a^b{f(x)g(x)dx} \le f(a)M f(a)mabf(x)g(x)dxf(a)M
再利用介值定理就可以证得结论

定积分的几何应用

平面图形的面积

我们知道定积分的几何意义是曲边梯形的面积,由此我们可以得到计算平面图形面积的方法。我们先引入最简单的两种情形——X型区域和Y型区域。所谓X型区域,即由两条曲线 y = f ( x ) , y = g ( x ) , x ∈ [ a , b ] y=f(x),y=g(x),x\in[a,b] y=f(x),y=g(x),x[a,b]以及两条直线 x = a , x = b x=a,x=b x=a,x=b围成的区域,其中 f ( x ) ≥ g ( x ) , x ∈ [ a , b ] f(x)\ge g(x),x\in[a,b] f(x)g(x),x[a,b],如下图所示:
在这里插入图片描述
由定积分的几何意义,阴影部分的面积为以 y = f ( x ) y=f(x) y=f(x)为顶边的曲边梯形的面积减去以 y = g ( x ) y=g(x) y=g(x)为顶边的曲边梯形的面积。于是,该X型区域的面积为 ∫ a b [ f ( x ) − g ( x ) ] d x \displaystyle \int_a^b [f(x)-g(x)]dx ab[f(x)g(x)]dx。同样地可以给出Y型区域以及其面积的求法。这是比较简单的情形,我们常常遇到的是由某一个曲线围成的图形,而曲线常常由参数方程 γ : { x = x ( t ) y = y ( t ) \gamma: \begin{cases} x=x(t)\\ y=y(t) \end{cases} γ:{x=x(t)y=y(t)其中 t ∈ [ α , β ] t\in[\alpha,\beta] t[α,β],并且 x ( α ) = x ( β ) , y ( α ) = y ( β ) x(\alpha)=x(\beta),y(\alpha)=y(\beta) x(α)=x(β),y(α)=y(β),除了起点和终点外没有重合的点。我们再规定 x ( t ) , y ( t ) x(t),y(t) x(t),y(t)连续可导,即有连续的导数。这种情形下,围成的图形的面积应该如何计算呢?我们先对 γ \gamma γ进行定向,如下图所示
在这里插入图片描述
为何规定正定向呢,我们先来看 γ \gamma γ围成一个X型区域的情形
在这里插入图片描述
t t t α \alpha α变动到 t 1 t_1 t1时, x ( t ) x(t) x(t)严格单调上升,存在反函数 t = t − 1 ( x ) t=t^{-1}(x) t=t1(x),代入到 y = y ( t ) y=y(t) y=y(t),得到 y = y ( t − 1 ( x ) ) = ϕ ( x ) y=y(t^{-1}(x))=\phi(x) y=y(t1(x))=ϕ(x),这样,由 y = ϕ ( x ) , x ∈ [ x ( t 1 ) , x ( α ) ] y=\phi(x),x\in[x(t_1),x(\alpha)] y=ϕ(x),x[x(t1),x(α)]为顶边的曲边梯形的面积为 S 1 = ∫ x ( t 1 ) x ( α ) ϕ ( x ) d x S_1=\int_{x(t_1)}^{x(\alpha)}\phi(x)dx S1=x(t1)x(α)ϕ(x)dx作变换 x = x ( t ) x=x(t) x=x(t),得到 S 1 = ∫ t 1 α y ( t ) x ′ ( t ) d t = − ∫ α t 1 y ( t ) x ′ ( t ) d t S_1=\int_{t_1}^\alpha y(t)x^\prime(t)dt=-\int_{\alpha}^{t_1}y(t)x^\prime(t)dt S1=t1αy(t)x(t)dt=αt1y(t)x(t)dt同理,当 t t t t 1 t_1 t1变动到 β \beta β时, x ( t ) x(t) x(t)单调上升,其反函数 t = t 2 − 1 ( x ) t=t_2^{-1}(x) t=t21(x)代入到 y = y ( t ) y=y(t) y=y(t)中,得到 ϕ 2 ( x ) = y ( t 2 − 1 ( x ) ) \phi_2(x)=y(t_2^{-1}(x)) ϕ2(x)=y(t21(x)),以 y = ϕ 2 ( x ) y=\phi_2(x) y=ϕ2(x)为顶边的曲边梯形的面积为 S 2 = ∫ x ( t 1 ) x ( β ) ϕ 2 ( t ) d t = ∫ t 1 β y ( t ) x ′ ( t ) d t S_2=\int_{x(t_1)}^{x(\beta)}\phi_2(t)dt=\int_{t_1}^\beta y(t)x^\prime(t)dt S2=x(t1)x(β)ϕ2(t)dt=t1βy(t)x(t)dt从而X型区域的面积为 S = S 1 − S 2 = − ∫ α β y ( t ) x ′ ( t ) d t S=S_1-S_2=-\int_\alpha^\beta y(t)x^\prime(t)dt S=S1S2=αβy(t)x(t)dt类似地,如果围成的区域是一个Y型区域,那么,计算公式为 ∫ α β x ( t ) y ′ ( t ) d t \displaystyle \int_\alpha^\beta x(t)y^\prime(t)dt αβx(t)y(t)dt。在上面求解过程中,正定向移动起到面积正负抵消的作用,对于一般的图形,若在某个过程 [ t 1 , t 2 ] [t_1,t_2] [t1,t2]中, x ( t ) x(t) x(t)单调下降,那么按照公式,其曲边梯形的面积取正值,若单调下降,按公式,其曲边梯形的面积取负值,运动一周后,正负相抵,恰好得到 γ \gamma γ所围成的图形的面积。我们以下面的图形来说明这一点
在这里插入图片描述
S ( t ) = − ∫ α t y ( t ) x ′ ( t ) d t \displaystyle S(t)=-\int_{\alpha}^t y(t)x^\prime(t)dt S(t)=αty(t)x(t)dt,则随着 t t t α \alpha α增大到 β \beta β,有 S ( t 1 ) = S 1 + S 2 + S 3 + S 4 + S 5 + S 6 S ( t 2 ) = S 1 + S 2 + S 6 S ( t 3 ) = S 1 + S 2 + S 6 + S 3 + S 4 S ( β ) = S 1 + S 4 + S 6 \begin{aligned} S(t_1)&=S_1+S_2+S_3+S_4+S_5+S_6\\ S(t_2)&=S_1+S_2+S_6\\ S(t_3)&=S_1+S_2+S_6+S_3+S_4\\ S(\beta)&=S_1+S_4+S_6 \end{aligned} S(t1)S(t2)S(t3)S(β)=S1+S2+S3+S4+S5+S6=S1+S2+S6=S1+S2+S6+S3+S4=S1+S4+S6可见,对于一般的曲线围成的区域,其面积计算公式 S = − ∫ α β y ( t ) x ′ ( t ) d t = ∫ α β x ( t ) y ′ ( t ) d t = 1 2 ∫ α β [ x ( t ) y ′ ( t ) − y ( t ) x ′ ( t ) ] d t \begin{aligned} S&=-\int_\alpha^\beta y(t)x^\prime(t)dt=\int_\alpha^\beta x(t)y^\prime(t)dt\\ &=\frac{1}{2}\int_\alpha^\beta[x(t)y^\prime(t)-y(t)x^\prime(t)]dt \end{aligned} S=αβy(t)x(t)dt=αβx(t)y(t)dt=21αβ[x(t)y(t)y(t)x(t)]dt简记为 S = 1 2 ∫ γ x d y − y d x S=\frac{1}{2}\int_\gamma xdy-ydx S=21γxdyydx

例7.1 推导椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1的面积公式

解:用参数方程表示 { x = a cos ⁡ θ y = b sin ⁡ θ , θ ∈ [ 0 , 2 π ] \begin{cases} x=a\cos{\theta}\\ y=b\sin{\theta} \end{cases} ,\theta\in[0,2\pi] {x=acosθy=bsinθ,θ[0,2π]椭圆的面积为 S = 1 2 ∫ 0 2 π [ ( a cos ⁡ θ ) . ( b cos ⁡ θ ) − ( b sin ⁡ θ ) ( − a sin ⁡ θ ) ] d θ = a b π S=\frac{1}{2}\int_0^{2\pi}[(a\cos\theta).(b\cos\theta)-(b\sin\theta)(-a\sin\theta)]d\theta=ab\pi S=2102π[(acosθ).(bcosθ)(bsinθ)(asinθ)]dθ=abπ

微元法

定积分解决的是连续量连续变化的积累或连续作用的总和,这个积累或总和表现出来的是一个量,记为 A A A。比如在物理学中求解变速直线运动的位移,应当如何做呢?在时间 [ 0 , T ] [0,T] [0,T]内,速度 v ( t ) v(t) v(t)连续变化,为了求解整个过程的位移,我们首先要对 [ 0 , T ] [0,T] [0,T]进行划分 Δ : 0 = t 0 < t 1 < ⋯ < t n = T \Delta:0=t_0<t_1<\cdots<t_n=T Δ:0=t0<t1<<tn=T,分别求解 [ t k − 1 , t k ] [t_{k-1},t_k] [tk1,tk]时间段内的位移 S k S_k Sk ( k = 1 , 2 , ⋯   , n ) (k=1,2,\cdots,n) (k=1,2,,n),设总的位移为 S S S,则 S = ∑ k = 1 n S k \displaystyle S=\sum_{k=1}^n S_k S=k=1nSk。只要 λ = max ⁡ 1 ≤ i ≤ n Δ t k \displaystyle\lambda = \max_{1\le i\le n}\Delta t_k λ=1inmaxΔtk足够小, v ( t ) v(t) v(t) [ t k − 1 , t k ] [t_{k-1},t_k] [tk1,tk]振幅极小(由一致连续性),从而我们将其视为匀速直线运动,任取 ζ k ∈ [ t k 1 , t k ] \zeta_k\in[t_{k_1},t_k] ζk[tk1,tk],估计 S k ≈ v ( ζ k ) Δ t k S_k \approx v(\zeta_k)\Delta t_k Skv(ζk)Δtk,从而估计 S ≈ ∑ k = 1 n v ( ζ k ) Δ t k S\approx\sum_{k=1}^nv(\zeta_k)\Delta t_k Sk=1nv(ζk)Δtk λ → 0 \lambda\to 0 λ0,这时取精确值 S = ∫ 0 T v ( t ) d t \displaystyle S=\int_0^T v(t)dt S=0Tv(t)dt。为什么可以这么取呢?实际上,有估计式: m k Δ t k ≤ S k ≤ M k Δ t k m_k\Delta t_k\le S_k \le M_k \Delta t_k mkΔtkSkMkΔtk其中 m k m_k mk M k M_k Mk v ( t ) v(t) v(t) [ t k − 1 , t k ] [t_{k-1},t_k] [tk1,tk]上的最小值和最大值,则 ∑ k = 1 n m k Δ t k ≤ S ≤ ∑ k = 1 n M k Δ t k \sum_{k=1}^n m_k\Delta t_k \le S \le \sum_{k=1}^n M_k \Delta t_k k=1nmkΔtkSk=1nMkΔtk λ → 0 \lambda \to 0 λ0时,不等式两边都趋于 ∫ 0 T v ( t ) d t \displaystyle \int_0^T v(t)dt 0Tv(t)dt,这就说明了 S = ∫ 0 T v ( t ) d t \displaystyle S=\int_0^T v(t)dt S=0Tv(t)dt。我们总结一下以上用定积分求解的过程:要考察某个连续量在区间 [ a , b ] [a,b] [a,b]上的累积作用 S S S,首先要要求这个量是和某个区间相联系的,并且具有区间可加性
第 一 步 ‾ \underline{第一步} :划分区间 a = x 0 < x 1 < ⋯ < x n = b a=x_0<x_1<\cdots<x_n=b a=x0<x1<<xn=b
第 二 步 ‾ \underline{第二步} :假设连续量在区间 [ x k − 1 , x k ] [x_{k-1},x_k] [xk1,xk]上的作用为 S k S_k Sk,估计 S k S_k Sk S k = f ( ζ k ) Δ x k S_k=f(\zeta_k)\Delta x_k Sk=f(ζk)Δxk这其中 f ( x ) f(x) f(x)是以连续函数, ζ k ∈ [ x k − 1 , x k ] \zeta_k\in[x_{k-1},x_k] ζk[xk1,xk],至于 f ( x ) f(x) f(x)如何确定,需要由相应的物理规律或几何知识加以确定,这是最关键的一步
第 三 步 ‾ \underline{第三步} :求和取极限,解得 S = ∫ a b f ( x ) d x \displaystyle S=\int_a^b f(x)dx S=abf(x)dx
第二步我们可以写成 d S = f ( x ) d x dS=f(x)dx dS=f(x)dx,两边积分就有 ∫ a b d S = ∫ a b f ( x ) d x \int_a^b dS = \int_a^b{f(x)dx} abdS=abf(x)dx这很类似于微分的形式,因此我们把这种方法称为微元法, d S dS dS称为微元

极坐标下平面图形的面积

对极坐标下的曲线 r = r ( θ ) ≥ 0 , θ ∈ [ α , β ] , β − α < 2 π r=r(\theta)\ge 0,\theta\in[\alpha,\beta],\beta-\alpha<2\pi r=r(θ)0,θ[α,β],βα<2π,求 r = r ( θ ) , θ = α , θ = β r=r(\theta),\theta=\alpha,\theta=\beta r=r(θ),θ=α,θ=β围成的图形的面积。我们用微元法来求解:

  1. [ α , β ] [\alpha,\beta] [α,β]划分为 α = a 0 < a 1 < ⋯ < a n = β \alpha=a_0<a_1<\cdots<a_n=\beta α=a0<a1<<an=β,令 S S S r = r ( θ ) , θ = α , θ = β r=r(\theta),\theta=\alpha,\theta=\beta r=r(θ),θ=α,θ=β围成的图形的面积, S k S_k Sk r = r ( θ ) , θ = a k − 1 , θ = a k r=r(\theta),\theta=a_{k-1},\theta=a_k r=r(θ),θ=ak1,θ=ak围成的图形的面积, S = ∑ k = 1 n S k ( k = 1 , ⋯   , n ) \displaystyle S=\sum_{k=1}^n S_k(k=1,\cdots,n) S=k=1nSk(k=1,,n)
  2. 估计 S k = 1 2 r 2 ( ζ k ) Δ θ ( k = 1 , 2 , ⋯   , n ) S_k=\frac{1}{2} r^2(\zeta_k)\Delta \theta(k=1,2,\cdots,n) Sk=21r2(ζk)Δθ(k=1,2,,n)
  3. 加总,求极限,得到 S = 1 2 ∫ α β r 2 ( θ ) d θ \displaystyle S=\frac{1}{2}\int_\alpha^\beta{r^2(\theta)d\theta} S=21αβr2(θ)dθ

如图,上述的第二步实际上就是取某一个半径,以一个扇形取估计 S k S_k Sk,如下图所示
在这里插入图片描述
实际上,设 r ( θ ) r(\theta) r(θ) [ a k − 1 , a k ] [a_{k-1},a_k] [ak1,ak]上的最小值的最大值分别为 m k , M k m_k,M_k mk,Mk,则 1 2 m k 2 Δ θ k ≤ S k ≤ 1 2 M k 2 Δ θ k 1 2 ∑ k = 1 n m k 2 Δ θ k ≤ S ≤ 1 2 ∑ k = 1 n M k 2 Δ θ k \frac{1}{2}m_k^2\Delta \theta_k \le S_k\le \frac{1}{2}M_k^2 \Delta \theta_k\\ \frac{1}{2}\sum_{k=1}^n m_k^2\Delta \theta_k \le S\le \frac{1}{2}\sum_{k=1}^n M_k^2\Delta \theta_k 21mk2ΔθkSk21Mk2Δθk21k=1nmk2ΔθkS21k=1nMk2Δθk λ → 0 \lambda \to 0 λ0,得到 S = 1 2 ∫ α β r 2 ( θ ) d θ \displaystyle S=\frac{1}{2}\int_\alpha^\beta r^2(\theta)d\theta S=21αβr2(θ)dθ
从微元的观点看, d S = 1 2 r 2 ( θ ) d θ dS=\frac{1}{2}r^2(\theta)d\theta dS=21r2(θ)dθ

例7.2 求心脏线 r = a ( 1 + cos ⁡ θ ) , θ ∈ [ 0 , 2 π ] r=a(1+\cos\theta),\theta\in[0,2\pi] r=a(1+cosθ),θ[0,2π]所围成的面积,其中 a > 0 a>0 a>0

解:
在这里插入图片描述
S = a 2 2 ∫ 0 2 π ( 1 + cos ⁡ θ ) 2 d θ = 3 2 a 2 π \displaystyle S=\frac{a^2}{2}\int_0^{2\pi}(1+\cos\theta)^2d\theta=\frac{3}{2}a^2\pi S=2a202π(1+cosθ)2dθ=23a2π

旋转体体积

对于 [ a , b ] [a,b] [a,b]上的连续函数 f ( x ) f(x) f(x),曲线 y = f ( x ) , x ∈ [ a , b ] y=f(x),x\in[a,b] y=f(x),x[a,b]绕着 x x x轴旋转一周,得到的几何体的体积该如何求呢?我们将 [ a , b ] [a,b] [a,b]作分划 Δ : a = x 0 < x 1 < ⋯ < x n = b \Delta:a=x_0<x_1<\cdots<x_n=b Δ:a=x0<x1<<xn=b,设 V V V y = f ( x ) , x ∈ [ a , b ] y=f(x),x\in[a,b] y=f(x),x[a,b]绕着 x x x轴旋转一周,得到的几何体的体积, V k V_k Vk y = f ( x ) , x ∈ [ x k − 1 , x k ] y=f(x),x\in[x_{k-1},x_k] y=f(x),x[xk1,xk]绕着 x x x轴旋转一周 ( k = 1 , ⋯   , n ) (k=1,\cdots,n) (k=1,,n),按微元法,下面需要对 V k V_k Vk进行估计,假设在 [ x k − 1 , x k ] [x_{k-1},x_k] [xk1,xk] f ( x ) f(x) f(x)是常数,得到的几何图形是一个圆柱体,从而 d V = π f 2 ( x ) d x dV=\pi f^2(x) dx dV=πf2(x)dx,由微元法 V = π ∫ a b f 2 ( x ) d x V=\pi\int_a^b{f^2(x)dx} V=πabf2(x)dx从另一个角度看,设 f ( x ) f(x) f(x) [ x k − 1 , x k ] [x_{k-1},x_k] [xk1,xk]上的最大值和最小值为 M k , m k M_k,m_k Mk,mk,这样 π m k 2 Δ x k ≤ V k ≤ π M k 2 Δ x k π ∑ k = 1 n m k 2 Δ x k ≤ V ≤ π ∑ k = 1 n M k 2 Δ x k \pi m_k^2 \Delta x_k \le V_k \le \pi M_k^2\Delta x_k\\ \pi \sum_{k=1}^n m_k^2 \Delta x_k \le V \le \pi \sum_{k=1}^n M_k^2\Delta x_k πmk2ΔxkVkπMk2Δxkπk=1nmk2ΔxkVπk=1nMk2Δxk两边令 λ → 0 \lambda \to 0 λ0,就有 V = π ∫ a b f 2 ( x ) d x \displaystyle V=\pi \int_a^b f^2(x)dx V=πabf2(x)dx。类似地, x = g ( y ) , y ∈ [ a , b ] x=g(y),y\in[a,b] x=g(y),y[a,b]绕着 y y y轴旋转得到的旋转体的体积应该为 V = π ∫ a b g 2 ( y ) d y \displaystyle V = \pi \int_a^b g^2(y)dy V=πabg2(y)dy

平面曲线的长度

对于一段平面曲线 { x = x ( t ) y = y ( t ) , t ∈ [ a , b ] \begin{cases} x=x(t)\\ y=y(t) \end{cases},t\in[a,b] {x=x(t)y=y(t),t[a,b]如何求解其长度呢,求解线段的长度是容易的,因此我们首先想到先将 [ a , b ] [a,b] [a,b]作一个分划 Δ : a = t 0 < t 1 < ⋯ < t n = b \Delta:a=t_0<t_1<\cdots<t_n=b Δ:a=t0<t1<<tn=b,设 [ t k − 1 , t k ] [t_{k-1},t_k] [tk1,tk]段的长度为 s k s_k sk [ a , b ] [a,b] [a,b]段的长度为 s s s,就有 s = ∑ k = 1 n s k \displaystyle s=\sum_{k=1}^ns_k s=k=1nsk,对于 s k s_k sk,我们采用两端点之间线段的长度来估算 s k ≈ ( x ( t k ) − x ( t k − 1 ) ) 2 + ( y ( t k ) − y ( t k − 1 ) ) 2 s_k\approx \sqrt{(x(t_k)-x(t_{k-1}))^2+(y(t_k)-y(t_{k-1}))^2} sk(x(tk)x(tk1))2+(y(tk)y(tk1))2 我们设 x ( t ) , y ( t ) x(t),y(t) x(t),y(t)有连续的导数,此时这段曲线是光滑的曲线,由拉格朗日中值定理,存在 ζ k , ξ k ∈ [ x k − 1 , x k ] \zeta_k,\xi_k \in [x_{k-1},x_k] ζk,ξk[xk1,xk],满足 x ( t k ) − x ( t k − 1 ) = x ′ ( ζ k ) Δ t k , y ( t k ) − y ( t k − 1 ) = y ′ ( ξ k ) Δ t k x(t_k)-x(t_{k-1})=x^\prime(\zeta_k)\Delta t_k,y(t_k)-y(t_{k-1})=y^\prime(\xi_k)\Delta t_k x(tk)x(tk1)=x(ζk)Δtk,y(tk)y(tk1)=y(ξk)Δtk,从而 s k ≈ x ′ 2 ( ζ k ) + y ′ 2 ( ξ k ) Δ t k s ≈ ∑ k = 1 n x ′ 2 ( ζ k ) + y ′ 2 ( ξ k ) Δ t k s_k\approx\sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\xi_k)}\Delta t_k\\ s\approx \sum_{k=1}^n{\sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\xi_k)}\Delta t_k} skx2(ζk)+y2(ξk) Δtksk=1nx2(ζk)+y2(ξk) Δtk由于 x ′ ( t ) x^{\prime}(t) x(t) [ a , b ] [a,b] [a,b]上连续,因此一致连续,对任意的 ε > 0 \varepsilon>0 ε>0,存在 δ 1 > 0 \delta_1>0 δ1>0,当 ∣ t ′ − t ′ ′ ∣ < δ 1 |t^\prime-t^{\prime\prime}|<\delta_1 tt<δ1时, ∣ f ( t ′ ) − f ( t ′ ′ ) ∣ < ε 2 ( b − a ) \left|f(t^\prime)-f(t^{\prime\prime})\right|<\frac{\varepsilon}{2(b-a)} f(t)f(t)<2(ba)ε,当 λ ( Δ ) < δ \lambda(\Delta)<\delta λ(Δ)<δ ∣ ∑ k = 1 n x ′ 2 ( ζ k ) + y ′ 2 ( ξ k ) Δ t k − ∑ k = 1 n x ′ 2 ( ξ k ) + y ′ 2 ( ξ k ) Δ t k ∣ ≤ ∑ k = 1 n ∣ x ′ ( ξ k ) − x ′ ( ζ k ) ∣ ( ∣ x ′ ( ξ k ) ∣ + ∣ x ′ ( ζ k ) ∣ ) x ′ 2 ( ζ k ) + y ′ 2 ( ξ k ) + x ′ 2 ( ξ k ) + y ′ 2 ( ξ k ) Δ t k ≤ ∑ k = 1 n ∣ x ′ ( ξ k ) − x ′ ( ζ k ) ∣ Δ t k < ε 2 \begin{aligned} &\left| \sum_{k=1}^n{\sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\xi_k)}\Delta t_k} - \sum_{k=1}^n{\sqrt{x^{\prime2}(\xi_k)+y^{\prime2}(\xi_k)}\Delta t_k} \right| \\&\le \sum_{k=1}^n \frac{ \left| x^\prime(\xi_k)-x^\prime(\zeta_k)\right|(|x^\prime(\xi_k)|+|x^\prime(\zeta_k)|) }{ {\sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\xi_k)}} + {\sqrt{x^{\prime2}(\xi_k)+y^{\prime2}(\xi_k)}} }\Delta t_k \\&\le\sum_{k=1}^n \left| x^\prime(\xi_k)-x^\prime(\zeta_k)\right|\Delta t_k<\frac{\varepsilon}{2} \end{aligned} k=1nx2(ζk)+y2(ξk) Δtkk=1nx2(ξk)+y2(ξk) Δtkk=1nx2(ζk)+y2(ξk) +x2(ξk)+y2(ξk) x(ξk)x(ζk)(x(ξk)+x(ζk))Δtkk=1nx(ξk)x(ζk)Δtk<2ε因此,我们估计 s ≈ ∑ k = 1 n x ′ 2 ( ξ k ) + y ′ 2 ( ξ k ) Δ t k s\approx \sum_{k=1}^n{\sqrt{x^{\prime2}(\xi_k)+y^{\prime2}(\xi_k)}\Delta t_k} sk=1nx2(ξk)+y2(ξk) Δtk存在 δ 2 > 0 \delta_2>0 δ2>0,当 λ ( Δ ) < δ 2 \lambda(\Delta)<\delta_2 λ(Δ)<δ2 ∣ ∑ k = 1 n x ′ 2 ( ξ k ) + y ′ 2 ( ξ k ) Δ t k − ∫ a b x ′ 2 ( t ) + y ′ 2 ( t ) d t ∣ < ε 2 \left| \sum_{k=1}^n{\sqrt{x^{\prime2}(\xi_k)+y^{\prime2}(\xi_k)}\Delta t_k} -\int_a^b\sqrt{x^{\prime2}(t)+y^{\prime2}(t)}dt \right|<\frac{\varepsilon}{2} k=1nx2(ξk)+y2(ξk) Δtkabx2(t)+y2(t) dt<2ε从而当 λ ( Δ ) < min ⁡ ( δ 1 , δ 2 ) \lambda(\Delta)<\min{(\delta_1,\delta_2)} λ(Δ)<min(δ1,δ2) ∣ ∑ k = 1 n x ′ 2 ( ζ k ) + y ′ 2 ( ξ k ) Δ t k − ∫ a b x ′ 2 ( t ) + y ′ 2 ( t ) d t ∣ < ε \left| \sum_{k=1}^n{\sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\xi_k)}\Delta t_k} - \int_a^b\sqrt{x^{\prime2}(t)+y^{\prime2}(t)}dt\right|<\varepsilon k=1nx2(ζk)+y2(ξk) Δtkabx2(t)+y2(t) dt<ε从而 lim ⁡ λ ( Δ ) → 0 ∑ k = 1 n ( x ( t k ) − x ( t k − 1 ) ) 2 + ( y ( t k ) − y ( t k − 1 ) ) 2 = ∫ a b x ′ 2 ( t ) + y ′ 2 ( t ) d t \begin{aligned} &\lim_{\lambda(\Delta)\to 0}\sum_{k=1}^n{\sqrt{(x(t_k)-x(t_{k-1}))^2+(y(t_k)-y(t_{k-1}))^2}} \\=& \int_a^b\sqrt{x^{\prime2}(t)+y^{\prime2}(t)}dt \end{aligned} =λ(Δ)0limk=1n(x(tk)x(tk1))2+(y(tk)y(tk1))2 abx2(t)+y2(t) dt y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b]上有连续的导数,其参数方程为 { x = x y = f ( x ) \begin{cases} x=x\\ y=f(x) \end{cases} {x=xy=f(x)其弧长为 L = ∫ a b 1 + f ′ 2 ( x ) d x \displaystyle L=\int_a^b\sqrt{1+f^{\prime2}(x)}dx L=ab1+f2(x) dx
若是极坐标系表示曲线 r = r ( θ ) , θ ∈ [ α , β ] r=r(\theta),\theta \in[\alpha,\beta] r=r(θ),θ[α,β],可以改写为参数方程形式 { x = r ( θ ) cos ⁡ θ y = r ( θ ) sin ⁡ θ \begin{cases} x=r(\theta)\cos\theta\\ y=r(\theta)\sin\theta \end{cases} {x=r(θ)cosθy=r(θ)sinθ则弧长为 L = ∫ α β r ′ 2 ( θ ) + r 2 ( θ ) d θ \displaystyle L=\int_\alpha^\beta{\sqrt{r^{\prime2}(\theta)+r^2(\theta)}d \theta} L=αβr2(θ)+r2(θ) dθ
这在微元法中,相当于微元为 d S = x ′ 2 ( t ) + y ′ 2 ( t ) d t dS=\sqrt{x^{\prime2}(t)+y^{\prime2}(t)}dt dS=x2(t)+y2(t) dt,我们称为弧长微元

旋转体的侧面积

下面我们来讨论旋转体侧面积的求解,对曲线 γ : { x = x ( t ) y = y ( t ) , t ∈ [ a , b ] \gamma:\begin{cases} x=x(t)\\ y=y(t) \end{cases},t\in [a,b] γ:{x=x(t)y=y(t),t[a,b]并且 x ( t ) , y ( t ) x(t),y(t) x(t),y(t)都有连续的导数,同时, x ′ ( t ) > 0 , x ∈ [ a , b ] x^\prime(t)>0,x\in[a,b] x(t)>0,x[a,b],首先,取分划 Δ : a = t 0 < t 1 < ⋯ < t n = b \Delta:a=t_0<t_1<\cdots<t_n=b Δ:a=t0<t1<<tn=b,我们令 M k ( x ( t k ) , y ( t k ) ) ( k = 0 , 1 , ⋯   , n ) M_k(x(t_k),y(t_k))(k=0,1,\cdots,n) Mk(x(tk),y(tk))(k=0,1,,n),利用 M 1 , M 2 , ⋯   , M n M_1,M_2,\cdots,M_n M1,M2,,Mn将曲线分隔开若干段。在 [ t k − 1 , t k ] [t_{k-1},t_k] [tk1,tk]段绕 x x x轴旋转一周所得的旋转体的侧面积为 S k S_k Sk,整段曲线绕 x x x轴旋转一周所得的旋转体的侧面积为 S S S,有 S = ∑ k = 1 n S k \displaystyle S=\sum_{k=1}^nS_k S=k=1nSk。下面我们来估算 S k ( k = 1 , ⋯   , n ) S_k(k=1,\cdots,n) Skk=1,,n)。连接 M k − 1 , M k M_{k-1},M_k Mk1,Mk所得的线段 M k − 1 M k M_{k-1}M_k Mk1Mk x x x轴旋转一周的旋转体是一个圆台。圆台的上底面半径为 r 1 r_1 r1,下底面半径为 r 2 r_2 r2,母线长为 l l l,则圆台的侧面积为 π ( r 1 + r 2 ) l \pi(r_1+r_2)l π(r1+r2)l,我们就以 M k − 1 M k M_{k-1}M_k Mk1Mk x x x轴旋转一周形成的圆台的侧面积作为 S k S_k Sk的估计,对 k = 1 , ⋯   , n k=1,\cdots,n k=1,,n,容易写出 S k S_k Sk的估计为 S k ≈ π ( y ( t k − 1 ) + y ( t k ) ) [ x ( t k ) − x ( t k − 1 ) ] 2 + [ y ( t k ) − y ( t k − 1 ) ] 2 S_k \approx \pi(y(t_{k-1})+y(t_k))\sqrt{[x(t_k)-x(t_{k-1})]^2+[y(t_k)-y(t_{k-1})]^2} Skπ(y(tk1)+y(tk))[x(tk)x(tk1)]2+[y(tk)y(tk1)]2 由介值定理,存在 ξ k ∈ [ t k − 1 , t k ] \xi_k \in [t_{k-1},t_k] ξk[tk1,tk],满足 y ( ξ k ) = y ( t k − 1 ) + y ( t k ) 2 y(\xi_k)=\frac{y(t_{k-1})+y(t_k)}{2} y(ξk)=2y(tk1)+y(tk),由拉格朗日中值定理,存在 ζ k , γ k ∈ [ t k − 1 , t k ] \zeta_k,\gamma_k\in[t_{k-1},t_k] ζk,γk[tk1,tk],满足 x ( t k ) − x ( t k − 1 ) = x ′ ( ζ k ) Δ t k y ( t k ) − y ( t k − 1 ) = y ′ ( γ k ) Δ t k x(t_k)-x(t_{k-1})=x^\prime(\zeta_k)\Delta t_k\\ y(t_k)-y(t_{k-1})=y^\prime(\gamma_k)\Delta t_k x(tk)x(tk1)=x(ζk)Δtky(tk)y(tk1)=y(γk)Δtk π ( y ( t k − 1 ) + y ( t k ) ) [ x ( t k ) − x ( t k − 1 ) ] 2 + [ y ( t k ) − y ( t k − 1 ) ] 2 = 2 π y ( ξ k ) x ′ 2 ( ζ k ) + y ′ 2 ( γ k ) Δ t k \begin{aligned} &\pi(y(t_{k-1})+y(t_k))\sqrt{[x(t_k)-x(t_{k-1})]^2+[y(t_k)-y(t_{k-1})]^2} \\=&2\pi y(\xi_k)\sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\gamma_k)}\Delta t_k \end{aligned} =π(y(tk1)+y(tk))[x(tk)x(tk1)]2+[y(tk)y(tk1)]2 2πy(ξk)x2(ζk)+y2(γk) Δtk ∣ y ( t ) ∣ ≤ M > 0 , t ∈ [ a , b ] |y(t)|\le M>0,t\in[a,b] y(t)M>0,t[a,b],再由 x ′ ( t ) , y ′ ( t ) x^{\prime}(t),y^{\prime}(t) x(t),y(t) [ a , b ] [a,b] [a,b]上连续,故一致连续,对任意的 ε > 0 \varepsilon>0 ε>0,存在 δ 1 > 0 \delta_1>0 δ1>0,当 ∣ t ′ − t ′ ′ ∣ < δ 1 |t^\prime-t^{\prime\prime}|<\delta_1 tt<δ1时,有 ∣ x ′ ( t ′ ) − x ′ ( t ′ ′ ) ∣ < ε 8 π M ( b − a ) , ∣ y ′ ( t ′ ) − y ′ ( t ′ ′ ) ∣ < ε 8 π M ( b − a ) |x^{\prime}(t^\prime)-x^\prime(t^{\prime\prime})|<\frac{\varepsilon}{8\pi M(b-a)},|y^{\prime}(t^\prime)-y^\prime(t^{\prime\prime})|<\frac{\varepsilon}{8\pi M(b-a)} x(t)x(t)<8πM(ba)ε,y(t)y(t)<8πM(ba)ε。则当 λ ( Δ ) < δ 1 \lambda(\Delta)<\delta_1 λ(Δ)<δ1 2 π ∣ ∑ k = 1 n y ( ξ k ) x ′ 2 ( ζ k ) + y ′ 2 ( γ k ) Δ t k − ∑ k = 1 n y ( ξ k ) x ′ 2 ( ξ k ) + y ′ 2 ( ξ k ) Δ t k ∣ ≤ 2 π ∑ k = 1 n ∣ y ( ξ k ) ∣ ∣ x ′ 2 ( ζ k ) − x ′ 2 ( ξ k ) + y ′ 2 ( γ k ) − y ′ 2 ( ξ k ) x ′ 2 ( ζ k ) + y ′ 2 ( γ k ) + x ′ 2 ( ξ k ) + y ′ 2 ( ξ k ) ∣ Δ t k ≤ 2 M π ∑ k = 1 n [ ∣ x ′ ( ζ k ) − x ′ ( ξ k ) ∣ ∣ x ′ ( ζ k ) ∣ + ∣ x ′ ( ξ k ) ∣ x ′ 2 ( ζ k ) + y ′ 2 ( γ k ) + x ′ 2 ( ξ k ) + y ′ 2 ( ξ k ) + ∣ y ′ ( γ k ) − y ′ ( ξ k ) ∣ ∣ y ′ ( γ k ) ∣ + ∣ y ′ ( ξ k ) ∣ x ′ 2 ( ζ k ) + y ′ 2 ( γ k ) + x ′ 2 ( ξ k ) + y ′ 2 ( ξ k ) ] Δ t k < 2 M π ∑ k = 1 n [ ε 4 M ( b − a ) π Δ t k ] = ε 2 \begin{aligned} &2\pi\left| \sum_{k=1}^n y(\xi_k)\sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\gamma_k)}\Delta t_k -\sum_{k=1}^n y(\xi_k)\sqrt{x^{\prime2}(\xi_k)+y^{\prime2}(\xi_k)}\Delta t_k \right| \\\le&2\pi\sum_{k=1}^n |y(\xi_k)|\left| \frac{ x^{\prime2}(\zeta_k)-x^{\prime2}(\xi_k)+y^{\prime2}(\gamma_k)-y^{\prime2}(\xi_k) }{ \sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\gamma_k)}+\sqrt{x^{\prime2}(\xi_k)+y^{\prime2}(\xi_k)} } \right|\Delta t_k \\\le&2M\pi\sum_{k=1}^n[|x^\prime(\zeta_k)-x^\prime(\xi_k)|\frac{ |x^\prime(\zeta_k)|+|x^\prime(\xi_k)| }{ \sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\gamma_k)}+\sqrt{x^{\prime2}(\xi_k)+y^{\prime2}(\xi_k)} } \\+&|y^\prime(\gamma_k)-y^\prime(\xi_k)|\frac{ |y^\prime(\gamma_k)|+|y^\prime(\xi_k)| }{ \sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\gamma_k)}+\sqrt{x^{\prime2}(\xi_k)+y^{\prime2}(\xi_k)} }]\Delta t_k \\< & 2M\pi\sum_{k=1}^n[\frac{\varepsilon}{4M(b-a)\pi}\Delta t_k] =\frac{\varepsilon}{2} \end{aligned} +<2πk=1ny(ξk)x2(ζk)+y2(γk) Δtkk=1ny(ξk)x2(ξk)+y2(ξk) Δtk2πk=1ny(ξk)x2(ζk)+y2(γk) +x2(ξk)+y2(ξk) x2(ζk)x2(ξk)+y2(γk)y2(ξk)Δtk2Mπk=1n[x(ζk)x(ξk)x2(ζk)+y2(γk) +x2(ξk)+y2(ξk) x(ζk)+x(ξk)y(γk)y(ξk)x2(ζk)+y2(γk) +x2(ξk)+y2(ξk) y(γk)+y(ξk)]Δtk2Mπk=1n[4M(ba)πεΔtk]=2ε再由定积分的定义,存在 δ 2 > 0 \delta_2>0 δ2>0,当 λ ( Δ ) < δ 2 \lambda(\Delta)<\delta_2 λ(Δ)<δ2 2 π ∣ ∑ k = 1 n y ( ξ k ) x ′ 2 ( ξ k ) + y ′ 2 ( ξ k ) Δ t k − ∫ a b y ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) d t ∣ < ε 2 2\pi\left| \sum_{k=1}^n y(\xi_k)\sqrt{x^{\prime2}(\xi_k)+y^{\prime2}(\xi_k)}\Delta t_k -\int_a^b{y(t)\sqrt{x^{\prime2}(t)+y^{\prime2}(t)}dt}\right|<\frac{\varepsilon}{2} 2πk=1ny(ξk)x2(ξk)+y2(ξk) Δtkaby(t)x2(t)+y2(t) dt<2ε λ ( Δ ) < min ⁡ ( δ 1 , δ 2 ) \lambda(\Delta)<\min(\delta_1,\delta_2) λ(Δ)<min(δ1,δ2) π ∣ ∑ k = 1 n ( y ( t k − 1 ) + y ( t k ) ) [ x ( t k ) − x ( t k − 1 ) ] 2 + [ y ( t k ) − y ( t k − 1 ) ] 2 − 2 ∫ a b y ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) d t ∣ = 2 π ∣ ∑ k = 1 n y ( ξ k ) x ′ 2 ( ζ k ) + y ′ 2 ( γ k ) Δ t k − ∫ a b y ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) d t ∣ ≤ 2 π ∣ ∑ k = 1 n y ( ξ k ) x ′ 2 ( ζ k ) + y ′ 2 ( γ k ) Δ t k − ∑ k = 1 n y ( ξ k ) x ′ 2 ( ξ k ) + y ′ 2 ( ξ k ) Δ t k ∣ + 2 π ∣ ∑ k = 1 n y ( ξ k ) x ′ 2 ( ξ k ) + y ′ 2 ( ξ k ) Δ t k − ∫ a b y ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) d t ∣ < ε 2 + ε 2 = ε \begin{aligned} &\pi|\sum_{k=1}^n(y(t_{k-1})+y(t_k))\sqrt{[x(t_k)-x(t_{k-1})]^2+[y(t_k)-y(t_{k-1})]^2} \\&-2\int_a^b{y(t)\sqrt{x^{\prime2}(t)+y^{\prime2}(t)}dt}|\\=&2\pi|\sum_{k=1}^n y(\xi_k)\sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\gamma_k)}\Delta t_k-\int_a^b{y(t)\sqrt{x^{\prime2}(t)+y^{\prime2}(t)}dt}|\\\le&2\pi| \sum_{k=1}^n y(\xi_k)\sqrt{x^{\prime2}(\zeta_k)+y^{\prime2}(\gamma_k)}\Delta t_k-\sum_{k=1}^n y(\xi_k)\sqrt{x^{\prime2}(\xi_k)+y^{\prime2}(\xi_k)}\Delta t_k |\\+&2\pi|\sum_{k=1}^n y(\xi_k)\sqrt{x^{\prime2}(\xi_k)+y^{\prime2}(\xi_k)}\Delta t_k-\int_a^b{y(t)\sqrt{x^{\prime2}(t)+y^{\prime2}(t)}dt}|\\<&\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \end{aligned} =+<πk=1n(y(tk1)+y(tk))[x(tk)x(tk1)]2+[y(tk)y(tk1)]2 2aby(t)x2(t)+y2(t) dt2πk=1ny(ξk)x2(ζk)+y2(γk) Δtkaby(t)x2(t)+y2(t) dt2πk=1ny(ξk)x2(ζk)+y2(γk) Δtkk=1ny(ξk)x2(ξk)+y2(ξk) Δtk2πk=1ny(ξk)x2(ξk)+y2(ξk) Δtkaby(t)x2(t)+y2(t) dt2ε+2ε=ε lim ⁡ λ ( Δ ) → 0 π ∑ k = 1 n ( y ( t k − 1 ) + y ( t k ) ) [ x ( t k ) − x ( t k − 1 ) ] 2 + [ y ( t k ) − y ( t k − 1 ) ] 2 = 2 π ∫ a b y ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) d t \begin{aligned} &\lim_{\lambda(\Delta)\to 0}\pi \sum_{k=1}^n(y(t_{k-1})+y(t_k))\sqrt{[x(t_k)-x(t_{k-1})]^2+[y(t_k)-y(t_{k-1})]^2}\\=&2\pi\int_a^by(t)\sqrt{x^{\prime2}(t)+y^{\prime2}(t)}dt \end{aligned} =λ(Δ)0limπk=1n(y(tk1)+y(tk))[x(tk)x(tk1)]2+[y(tk)y(tk1)]2 2πaby(t)x2(t)+y2(t) dt侧面积就为 2 π ∫ a b y ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) d t \displaystyle 2\pi\int_a^by(t)\sqrt{x^{\prime2}(t)+y^{\prime2}(t)}dt 2πaby(t)x2(t)+y2(t) dt,从微元法的角度看,即是 d S = 2 π y ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) d t dS=2\pi y(t)\sqrt{x^{\prime2}(t)+y^{\prime2}(t)}dt dS=2πy(t)x2(t)+y2(t) dt。利用这个结果,可以得到直角坐标系下旋转体的侧面积为 2 π ∫ a b y ( x ) 1 + y ′ 2 ( x ) d x \displaystyle 2\pi\int_a^b{y(x)\sqrt{1+y^{\prime2}(x)}dx} 2πaby(x)1+y2(x) dx,同理也可以写出极坐标系下的公式,这里就不再赘述了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值