函数的傅里叶级数
周期为2π2\pi2π的函数的傅里叶级数
从纯数学的观点看,幂级数是对函数系1,x,x2,x3,⋯
1,x,x^2,x^3,\cdots
1,x,x2,x3,⋯的线性组合,实际上,多项式是以上函数系的有限线性组合,幂级数是对以上函数系的可数线性组合。从这个观点看,更换一组函数系,就可以得到另一种级数,初等函数中具有周期性的典型的函数是三角函数,因此,自然想到采用三角函数系来构成新的级数形式1,sin(x),cos(x),sin(2x),cos(2x),sin(3x),cos(3x),⋯
1,\sin(x),\cos(x),\sin(2x),\cos(2x),\sin(3x),\cos(3x),\cdots
1,sin(x),cos(x),sin(2x),cos(2x),sin(3x),cos(3x),⋯我们称级数f(x)=a0+∑n=1∞(ancos(nx)+bnsin(nx))
f(x)=a_0+\sum_{n=1}^{\infty}(a_n\cos(nx)+b_n\sin(nx))
f(x)=a0+n=1∑∞(ancos(nx)+bnsin(nx))为傅里叶级数。显然,如果f(x)f(x)f(x)可以展开成以上三角级数的形式,那么,f(x)f(x)f(x)应当是以2π2\pi2π为周期的。反过来,我们要问:如果函数f(x)f(x)f(x)是以2π2\pi2π为周期的函数,满足何种条件下它能展开成三角级数的形式?如果能展开,各项系数应当如何确定呢?
我们首先假设f(x)能展开成三角级数的形式‾\underline{f(x)能展开成三角级数的形式}f(x)能展开成三角级数的形式,并且假设可以进行逐项积分‾\underline{逐项积分}逐项积分。那么我们可以通过逐项积分的形式求出各项系数。为什么呢?因为三角函数系具有正交性‾\underline{正交性}正交性,是正交函数系‾\underline{正交函数系}正交函数系。我们在解析几何和高等代数中接触了内积空间的概念,所谓内积,即满足对称、正定的双线性函数‾\underline{对称、正定的双线性函数}对称、正定的双线性函数。对于[a,b][a,b][a,b]上的可积函数f(x),g(x)f(x),g(x)f(x),g(x),定义内积为<f,g>=∫abf(x)g(x)dx\displaystyle <f,g>=\int_a^b{f(x)g(x)dx}<f,g>=∫abf(x)g(x)dx,从解析几何的观点看,如果两个向量垂直或称正交,那么,两个向量的内积为0,在抽象的函数空间这里,我们也引入“正交”的概念,下面我们验证三角函数系在[−π,+π][-\pi,+\pi][−π,+π]上是正交函数系。∫−ππsin(nx)dx=[−1ncos(nx)]−ππ=0,n=1,2,⋯
\int_{-\pi}^{\pi}{sin(nx)dx}=[-\frac{1}{n}cos(nx)]_{-\pi}^\pi=0,n=1,2,\cdots
∫−ππsin(nx)dx=[−n1cos(nx)]−ππ=0,n=1,2,⋯∫−ππcos(nx)dx=[1nsin(nx)]−ππ=0,n=1,2,⋯
\int_{-\pi}^\pi{cos(nx)dx}=[\frac{1}{n}sin(nx)]_{-\pi}^\pi=0,n=1,2,\cdots
∫−ππcos(nx)dx=[n1sin(nx)]−ππ=0,n=1,2,⋯∫−ππcos(ix)cos(jx)dx=12(∫−ππcos((i+j)x)dx+∫−ππcos((i−j)x)dx)=0i≠j,i,j=1,2,⋯\begin{aligned}
\int_{-\pi}^\pi{\cos(ix)\cos(jx)dx}=\frac{1}{2}(\int_{-\pi}^\pi{cos((i+j)x)dx}+\int_{-\pi}^\pi{cos((i-j)x)dx})=0\\i\neq j,i,j=1,2,\cdots
\end{aligned}
∫−ππcos(ix)cos(jx)dx=21(∫−ππcos((i+j)x)dx+∫−ππcos((i−j)x)dx)=0i=j,i,j=1,2,⋯∫−ππsin(ix)sin(jx)dx=12(∫−ππcos((i−j)x)dx−∫−ππcos((i+j)x)dx)=0i≠j,i,j=1,2,⋯
\begin{aligned}
\int_{-\pi}^\pi{\sin(ix)\sin(jx)dx}=\frac{1}{2}(\int_{-\pi}^\pi{cos((i-j)x)dx}-\int_{-\pi}^\pi{cos((i+j)x)dx})=0\\i\neq j,i,j=1,2,\cdots
\end{aligned}
∫−ππsin(ix)sin(jx)dx=21(∫−ππcos((i−j)x)dx−∫−ππcos((i+j)x)dx)=0i=j,i,j=1,2,⋯∫−ππsin(ix)cos(jx)dx=12(∫−ππsin((i−j)x)dx+∫−ππsin((i+j)x)dx)=0i,j=1,2,⋯
\begin{aligned}
\int_{-\pi}^\pi{\sin(ix)\cos(jx)dx}=\frac{1}{2}(\int_{-\pi}^\pi{sin((i-j)x)dx}+\int_{-\pi}^\pi{sin((i+j)x)dx})=0\\i,j=1,2,\cdots
\end{aligned}
∫−ππsin(ix)cos(jx)dx=21(∫−ππsin((i−j)x)dx+∫−ππsin((i+j)x)dx)=0i,j=1,2,⋯由正交性,要求sin(nx),cos(nx),1\sin(nx),\cos(nx),1sin(nx),cos(nx),1对应的系数,只需要乘以相应的三角函数,再进行逐项积分即可。由于∫−ππdx=2π
\int_{-\pi}^\pi{dx}=2\pi∫−ππdx=2π∫−ππcos2(nx)dx=∫−ππ1+cos(2nx)2dx=π
\int_{-\pi}^\pi{\cos^2(nx)dx}=\int_{-\pi}^\pi{\frac{1+\cos(2nx)}{2}dx}=\pi∫−ππcos2(nx)dx=∫−ππ21+cos(2nx)dx=π∫−ππsin2(nx)dx=∫−ππ1−cos(2nx)2dx=π
\int_{-\pi}^\pi{\sin^2(nx)dx}=\int_{-\pi}^\pi{\frac{1-\cos(2nx)}{2}dx}=\pi
∫−ππsin2(nx)dx=∫−ππ21−cos(2nx)dx=π两边乘以111,再进行逐项积分,得到∫−ππf(x)dx=2πa0
\int_{-\pi}^\pi{f(x)dx}=2\pi a_0
∫−ππf(x)dx=2πa0两边乘以cos(nx)\cos(nx)cos(nx),再进行逐项积分,得到
∫−ππf(x)cos(nx)dx=anπ,n=1,2,⋯
\int_{-\pi}^\pi{f(x)\cos{(nx)}dx}=a_n\pi,n=1,2,\cdots
∫−ππf(x)cos(nx)dx=anπ,n=1,2,⋯两边乘以sin(nx)\sin(nx)sin(nx),再进行逐项积分,得到∫−ππf(x)sin(nx)dx=bnπ,n=1,2,⋯
\int_{-\pi}^\pi{f(x)\sin{(nx)}dx}=b_n\pi,n=1,2,\cdots
∫−ππf(x)sin(nx)dx=bnπ,n=1,2,⋯于是,我们就求解出所有系数。总结起来就是{a0=12π∫−ππf(x)dxan=1π∫−ππf(x)cos(nx)dxn=1,2,⋯bn=1π∫−ππf(x)sin(nx)dxn=1,2,⋯
\begin{cases}
a_0=\frac{1}{2\pi}\int_{-\pi}^\pi{f(x)dx}\\
a_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(x)\cos{(nx)}dx}&n=1,2,\cdots\\
b_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(x)\sin{(nx)}dx}&n=1,2,\cdots
\end{cases}
⎩⎪⎨⎪⎧a0=2π1∫−ππf(x)dxan=π1∫−ππf(x)cos(nx)dxbn=π1∫−ππf(x)sin(nx)dxn=1,2,⋯n=1,2,⋯这组系数称为傅里叶系数,实际上,如果f(x)f(x)f(x)在[−π,π][-\pi,\pi][−π,π]上可积,也可以求出这么一组系数,但f(x)f(x)f(x)是否等于其傅里叶级数呢?答案是否定的。因为,如果仅仅改变f(x)f(x)f(x)在[−π,π][-\pi,\pi][−π,π]内的有限个点,傅里叶级数也是不变的,所以,我们只能称f(x)f(x)f(x)对应于其傅里叶级数,而不能简单的划等号。我们记f(x) a0+∑n=1∞ancos(nx)+bnsin(nx)
f(x)~a_0+\sum_{n=1}^\infty{a_n\cos(nx)+b_n\sin(nx)}
f(x) a0+n=1∑∞ancos(nx)+bnsin(nx)波浪号就表示对应,而不是采用等号,右边称为f(x)f(x)f(x)的傅里叶级数。对于求傅里叶级数,我们给出一个命题,以方便我们选择最合适的区间来进行积分。
定理12.1 f(x)f(x)f(x)是(−∞,+∞)(-\infty,+\infty)(−∞,+∞)上的以2T2T2T为周期的函数,f(x)f(x)f(x)在任意有界闭区间上可积,则∀δ∈R\forall \delta \in R∀δ∈R,有∫−TTf(x)dx=∫−T+δT+δf(x)dx \int_{-T}^T{f(x)dx}=\int_{-T+\delta}^{T+\delta}{f(x)}dx ∫−TTf(x)dx=∫−T+δT+δf(x)dx
证:
不失一般性,设δ>0\delta>0δ>0,我们证明:∫−T−T+δf(x)dx=∫TT+δf(x)dx\displaystyle \int_{-T}^{-T+\delta}{f(x)dx}=\int_{T}^{T+\delta}{f(x)dx}∫−T−T+δf(x)dx=∫TT+δf(x)dx,令分划Δn:T=x0(n)<x1(n)=T+δn<⋯<xn−1(n)=T+(n−1)δn<xn(n)=T+δ\Delta_n:T=x_0^{(n)}<x_1^{(n)}=T+\frac{\delta}{n}<\cdots<x_{n-1}^{(n)}=T+\frac{(n-1)\delta}{n}<x_n^{(n)}=T+\deltaΔn:T=x0(n)<x1(n)=T+nδ<⋯<xn−1(n)=T+n(n−1)δ<xn(n)=T+δ,构造黎曼和Sn(x)=δn∑k=1nf(T+kδn) S_n(x)=\frac{\delta}{n}\sum_{k=1}^nf(T+\frac{k\delta}{n}) Sn(x)=nδk=1∑nf(T+nkδ)由周期性Sn(x)=δn∑k=1nf(−T+kδn) S_n(x)=\frac{\delta}{n}\sum_{k=1}^nf(-T+\frac{k\delta}{n}) Sn(x)=nδk=1∑nf(−T+nkδ)由定积分的定义,limn→∞Sn=∫TT+δf(x)dx\displaystyle \lim_{n\to\infty}S_n=\int_T^{T+\delta}{f(x)dx}n→∞limSn=∫TT+δf(x)dx,若按照后一式子的写法,也可看做在分划Δn:−T=x0(n)<x1(n)=−T+δn<⋯<xn−1(n)=−T+(n−1)δn<xn(n)=−T+δ\Delta_n:-T=x_0^{(n)}<x_1^{(n)}=-T+\frac{\delta}{n}<\cdots<x_{n-1}^{(n)}=-T+\frac{(n-1)\delta}{n}<x_n^{(n)}=-T+\deltaΔn:−T=x0(n)<x1(n)=−T+nδ<⋯<xn−1(n)=−T+n(n−1)δ<xn(n)=−T+δ上的一个黎曼和,因此,由定积分的定义,有limn→∞Sn=∫−T−T+δf(x)dx\displaystyle\lim_{n\to\infty}S_n=\int_{-T}^{-T+\delta}f(x)dxn→∞limSn=∫−T−T+δf(x)dx,这就证得了∫−T−T+δf(x)dx=∫TT+δf(x)dx\displaystyle \int_{-T}^{-T+\delta}{f(x)dx}=\int_{T}^{T+\delta}{f(x)dx}∫−T−T+δf(x)dx=∫TT+δf(x)dx,于是:∫−TTf(x)dx=∫−T−T+δf(x)dx+∫−T+δT+δf(x)dx+∫T+δTf(x)dx=∫−T−T+δf(x)dx+∫−T+δT+δf(x)dx−∫TT+δf(x)dx=∫−T+δT+δf(x)dx \begin{aligned} \int_{-T}^{T}{f(x)dx}=\int_{-T}^{-T+\delta}{f(x)dx}+\int_{-T+\delta}^{T+\delta}{f(x)dx}+\int_{T+\delta}^T{f(x)dx}=\\ \int_{-T}^{-T+\delta}{f(x)dx}+\int_{-T+\delta}^{T+\delta}{f(x)dx}-\int_T^{T+\delta}{f(x)dx}=\int_{-T+\delta}^{T+\delta}{f(x)dx} \end{aligned} ∫−TTf(x)dx=∫−T−T+δf(x)dx+∫−T+δT+δf(x)dx+∫T+δTf(x)dx=∫−T−T+δf(x)dx+∫−T+δT+δf(x)dx−∫TT+δf(x)dx=∫−T+δT+δf(x)dx
也就是说,实际上,我们任意选一个长度为2π2\pi2π的区间进行积分,都是可以求出傅里叶级数的。对于[−π,π)[-\pi,\pi)[−π,π)或[0,2π)[0,2\pi)[0,2π)上的可积函数,我们可以通过延拓‾\underline{延拓}延拓的方式将其延拓为周期为2π2\pi2π的周期函数,同样可以求解傅里叶级数。下面给出若干求解傅里叶级数的例子。来展示求傅里叶级数的一般步骤。
例12.1 求f(x)=π−x,x∈[−π,π)f(x)=\pi-x,x\in[-\pi,\pi)f(x)=π−x,x∈[−π,π)的傅里叶级数
解:
首先,进行延拓,延拓为周期为2π2\pi2π的周期函数。
再求傅里叶系数:∫−ππ(π−x)dx=πx−x22∣−ππ=2π,a0=π \int_{-\pi}^\pi{(\pi-x)dx}=\pi x-\frac{x^2}{2}|_{-\pi}^\pi=2\pi,a_0=\pi ∫−ππ(π−x)dx=πx−2x2∣−ππ=2π,a0=π∫−ππ(π−x)cos(nx)dx=0,an=0,n=1,2,⋯ \int_{-\pi}^\pi{(\pi-x)cos(nx)dx}=0,a_n=0,n=1,2,\cdots ∫−ππ(π−x)cos(nx)dx=0,an=0,n=1,2,⋯∫−ππ(π−x)sin(nx)dx=−∫−ππxsin(nx)dx=1nxcos(nx)∣−ππ−1n∫−ππcos(nx)dx=2π(−1)nn,bn=2(−1)nn,n=1,2,⋯\begin{aligned} \int_{-\pi}^\pi{(\pi-x)sin(nx)dx}=-\int_{-\pi}^\pi{xsin(nx)dx}=\frac{1}{n}x\cos(nx)|_{-\pi}^\pi-\frac{1}{n}\int_{-\pi}^\pi{\cos(nx)dx}\\=\frac{2\pi (-1)^n}{n},b_n=\frac{2(-1)^n}{n},n=1,2,\cdots \end{aligned} ∫−ππ(π−x)sin(nx)dx=−∫−ππxsin(nx)dx=n1xcos(nx)∣−ππ−n1∫−ππcos(nx)dx=n2π(−1)n,bn=n2(−1)n,n=1,2,⋯因此,f(x)∼π+2∑n=1∞(−1)nnsin(nx)\displaystyle f(x) \sim \pi+2\sum_{n=1}^\infty{\frac{(-1)^n}{n}\sin(nx)}f(x)∼π+2n=1∑∞n(−1)nsin(nx)
这是比较实用的一个例子,后面求一些特殊的级数时可以用到。
例12.2 求f(x)=x2k−1,x∈[−π,π)f(x)=x^{2k-1},x\in[-\pi,\pi)f(x)=x2k−1,x∈[−π,π)的傅里叶级数
解:
求傅里叶系数:首先,对k=1,2,⋯k=1,2,\cdotsk=1,2,⋯,由奇偶性,傅里叶级数只有正弦项,设fk(x)=x2k−1f_k(x)=x^{2k-1}fk(x)=x2k−1对应sin(nx)\sin(nx)sin(nx)项的系数为bn(k)b^{(k)}_nbn(k),则bn(k+1)=1π∫−ππx2k+1sin(nx)dx=−1nπx2k+1cos(nx)∣−ππ+2k+1nπ∫−ππx2kcos(nx)dx=−2(−1)nπ2kn+2k+1nπ∫−ππx2kcos(nx)dx=−2(−1)nπ2kn+2k+1n2πx2ksin(nx)∣−ππ−2k(2k+1)n2π∫−ππx2k−1sin(nx)dx=−2(−1)nπ2kn−2k(2k+1)n2bn(k)\begin{aligned} b^{(k+1)}_n=\frac{1}{\pi}\int_{-\pi}^\pi{x^{2k+1}\sin(nx)dx}\\=-\frac{1}{n\pi}x^{2k+1}\cos(nx)|_{-\pi}^\pi+\frac{2k+1}{n\pi}\int_{-\pi}^\pi{x^{2k}\cos(nx)dx}\\ =-\frac{2^(-1)^n\pi^{2k}}{n}+\frac{2k+1}{n\pi}\int_{-\pi}^\pi{x^{2k}\cos(nx)dx}\\=-\frac{2(-1)^n\pi^{2k}}{n}+\frac{2k+1}{n^2\pi}x^{2k}\sin(nx)|_{-\pi}^\pi-\frac{2k(2k+1)}{n^2\pi}\int_{-\pi}^\pi{x^{2k-1}sin(nx)dx}\\ =-\frac{2(-1)^n\pi^{2k}}{n}-\frac{2k(2k+1)}{n^2}b_n^{(k)} \end{aligned} bn(k+1)=π1∫−ππx2k+1sin(nx)dx=−nπ1x2k+1cos(nx)∣−ππ+nπ2k+1∫−ππx2kcos(nx)dx=−n2(−1)nπ2k+nπ2k+1∫−ππx2kcos(nx)dx=−n2(−1)nπ2k+n2π2k+1x2ksin(nx)∣−ππ−n2π2k(2k+1)∫−ππx2k−1sin(nx)dx=−n2(−1)nπ2k−n22k(2k+1)bn(k)这样我们得到一个递推式bn(k+1)=−2(−1)nπ2kn−2k(2k+1)n2bn(k) b^{(k+1)}_n=-\frac{2(-1)^n\pi^{2k}}{n}-\frac{2k(2k+1)}{n^2}b_n^{(k)} bn(k+1)=−n2(−1)nπ2k−n22k(2k+1)bn(k)这样,我们只要求出f(X)=xf(X)=xf(X)=x的傅里叶级数,就可以顺着递推式得到其他的傅里叶级数而不需要再重复进行积分。而bn(1)=1π∫−ππxsin(nx)dx=−2(−1)nn b_n^{(1)}=\frac{1}{\pi}\int_{-\pi}^\pi{x\sin(nx)dx}=-\frac{2(-1)^n}{n} bn(1)=π1∫−ππxsin(nx)dx=−n2(−1)n再由递推式,就可以得到{bn(2)=−2(−1)nπ2n+12(−1)nn3bn(3)=−2(−1)nπ4n+40(−1)nπ2n3−240(−1)nn5 \begin{cases} b_n^{(2)}=-\frac{2(-1)^n\pi^2}{n}+\frac{12(-1)^n}{n^3}\\ b_n^{(3)}=-\frac{2(-1)^n\pi^4}{n}+\frac{40(-1)^n\pi^2}{n^3}-\frac{240(-1)^n}{n^5} \end{cases} {bn(2)=−n2(−1)nπ2+n312(−1)nbn(3)=−n2(−1)nπ4+n340(−1)nπ2−n5240(−1)n于是就可以求出所有的傅里叶系数。
例12.3 求f(x)=x2k,x∈[−π,π]f(x)=x^{2k},x\in[-\pi,\pi]f(x)=x2k,x∈[−π,π]的傅里叶系数
解:
类似于上例的做法,所有的sin\sinsin项的系数均为0,而a0(k)=12π∫−ππx2kdx=π2k2(2k+1) a_0^{(k)}=\frac{1}{2\pi}\int_{-\pi}^\pi{x^{2k}dx}=\frac{\pi^{2k}}{2(2k+1)} a0(k)=2π1∫−ππx2kdx=2(2k+1)π2kan(k+1)=4(k+1)(−1)nπ2k−2n2−2(k+1)(2k+1)n2an(k) a_n^{(k+1)}=\frac{4(k+1)(-1)^n\pi^{2k-2}}{n^2}-\frac{2(k+1)(2k+1)}{n^2}a^{(k)}_n an(k+1)=n24(k+1)(−1)nπ2k−2−n22(k+1)(2k+1)an(k)an(1)=−4(−1)nn2 a_n^{(1)}=-\frac{4(-1)^n}{n^2} an(1)=−n24(−1)n其他项依此类推
任意区间上的函数的傅里叶级数
现在我们来考虑周期为2T2T2T的函数f(x)f(x)f(x),实际上,只需要一个简单的变换g(x)=f(Tπx)g(x)=f(\frac{T}{\pi}x)g(x)=f(πTx),即可得到周期为2π2\pi2π的函数g(x)g(x)g(x),其傅里叶级数为a0=12π∫−ππf(Tπx)dx=12T∫−TTf(x)dx
a_0=\frac{1}{2\pi}\int_{-\pi}^\pi{f(\frac{T}{\pi}x)dx}=\frac{1}{2T}\int_{-T}^T{f(x)dx}
a0=2π1∫−ππf(πTx)dx=2T1∫−TTf(x)dxan=1π∫−ππf(Tπ)cos(nx)dx=1T∫−TTf(x)cos(nπxT)dx
a_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(\frac{T}{\pi})\cos(nx)dx}=\frac{1}{T}\int_{-T}^T{f(x)\cos(\frac{n\pi x}{T})dx}
an=π1∫−ππf(πT)cos(nx)dx=T1∫−TTf(x)cos(Tnπx)dxbn=1π∫−ππf(Tπ)sin(nx)dx=1T∫−TTf(x)sin(nπxT)dx
b_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(\frac{T}{\pi})\sin(nx)dx}=\frac{1}{T}\int_{-T}^T{f(x)\sin(\frac{n\pi x}{T})dx}
bn=π1∫−ππf(πT)sin(nx)dx=T1∫−TTf(x)sin(Tnπx)dx得到f(Tπx)∼a0+∑n=1∞(ancos(nx)+bnsin(nx))
f(\frac{T}{\pi}x)\sim a_0+\sum_{n=1}^\infty{(a_n\cos(nx)+b_n\sin(nx))}
f(πTx)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))再作变量替换u=Txπu=\frac{Tx}{\pi}u=πTx,得到f(u)∼a0+∑n=1∞(ancos(nπuT)+bnsin(nπuT))
f(u)\sim a_0+\sum_{n=1}^\infty{(a_n\cos(\frac{n\pi u}{T})+b_n\sin(\frac{n\pi u}{T}))}
f(u)∼a0+n=1∑∞(ancos(Tnπu)+bnsin(Tnπu))看到这种形式,不难看出,实际上,这就是换了另一组函数系1,sin(πxT),cos(πxT),sin(2πxT),cos(2πxT),⋯
1,\sin(\frac{\pi x}{T}),\cos(\frac{\pi x}{T}),\sin(\frac{2\pi x}{T}),\cos(\frac{2\pi x}{T}),\cdots
1,sin(Tπx),cos(Tπx),sin(T2πx),cos(T2πx),⋯再重复上一节的理论就可以得到任意周期的周期函数的傅里叶级数,形式和上面是相同的。若f(x)f(x)f(x)是区间[a,b)[a,b)[a,b)上的 函数,做平移变换g(x)=f(x−a)g(x)=f(x-a)g(x)=f(x−a),将其变换为[0,T)[0,T)[0,T)上的函数,其中T=b−aT=b-aT=b−a。接下来,我们有两种延拓方式,将其延拓为[−T,T)[-T,T)[−T,T)上的函数,一种是奇延拓(正弦级数),一种是偶延拓(余弦级数),顾名思义,即是延拓为奇函数还是延拓为偶函数的区别。延拓之后,再延拓为周期为2T2T2T的函数,再求解其傅里叶级数即可,这是一般函数的延拓方式。下面举几个例子说明延拓的过程。
例12.4 求下列周期为2π2\pi2π的函数的正弦级数和余弦级数:
f(x)=sinx,0≤x≤πf(x)=\sin{x},0\le x\le \pif(x)=sinx,0≤x≤π;
解:
首先进行奇延拓得到正弦级数,实际上,奇延拓之后f(x)=sinx,x∈[−π,π]f(x)=\sin{x},x\in[-\pi,\pi]f(x)=sinx,x∈[−π,π],其傅里叶级数即为f(x)∼sinxf(x)\sim \sin{x}f(x)∼sinx。
再进行偶延拓得到余弦级数,当x∈[−π,0)x\in[-\pi,0)x∈[−π,0)时,f(x)=f(−x)=−sinxf(x)=f(-x)=-\sin{x}f(x)=f(−x)=−sinx,则bn=0,n=1,2,⋯b_n=0,n=1,2,\cdotsbn=0,n=1,2,⋯,则a0=1π∫0πsinxdx=−1πcosx∣0π=2π a_0=\frac{1}{\pi}\int_{0}^\pi{\sin{x}dx}=-\frac{1}{\pi}\cos{x}|_0^\pi=\frac{2}{\pi} a0=π1∫0πsinxdx=−π1cosx∣0π=π2an=2π∫0πsinxcosnxdx=(−1)n+1π(n+1)−1π∫0πsin(n−1)xdx a_n=\frac{2}{\pi}\int_0^\pi{\sin{x}\cos{nx}dx}= \frac{(-1)^n+1}{\pi(n+1)}-\frac{1}{\pi}\int_0^\pi{\sin(n-1)xdx} an=π2∫0πsinxcosnxdx=π(n+1)(−1)n+1−π1∫0πsin(n−1)xdx由上式,nnn为奇数时,an=0a_n=0an=0,n=2kn=2kn=2k时,an=−4π(2k−1)(2k+1)a_n=-\frac{4}{\pi(2k-1)(2k+1)}an=−π(2k−1)(2k+1)4。从而f(x)∼2π−4π∑n=1∞cos(2nx)4n2−1 f(x)\sim \frac{2}{\pi}-\frac{4}{\pi}\sum_{n=1}^\infty\frac{\cos{(2nx)}}{4n^2-1} f(x)∼π2−π4n=1∑∞4n2−1cos(2nx)
例12.5 求下列周期为T>0T>0T>0的函数的傅里叶级数:
f(x)=x,0≤x<Tf(x)=x,0\le x < Tf(x)=x,0≤x<T
解:
需要注意的是,周期的一半是T2\frac{T}{2}2T,计算傅里叶系数时要谨慎。a0=1T∫0Txdx=T2 a_0=\frac{1}{T}\int_0^T{xdx}=\frac{T}{2} a0=T1∫0Txdx=2Tan=2T∫0Txcos(2nπxT)dx=0 a_n=\frac{2}{T}\int_0^T{x\cos(\frac{2n\pi x}{T})dx}=0 an=T2∫0Txcos(T2nπx)dx=0bn=2T∫0Txsin(2nπxT)dx=−Tnπ b_n=\frac{2}{T}\int_0^T{x\sin(\frac{2n\pi x}{T})dx}=-\frac{T}{n\pi} bn=T2∫0Txsin(T2nπx)dx=−nπT因此f(x)∼T2−Tπ∑n=1∞1nsin(2nπxT) f(x)\sim \frac{T}{2}-\frac{T}{\pi}\sum_{n=1}^\infty\frac{1}{n}\sin{(\frac{2n\pi x}{T})} f(x)∼2T−πTn=1∑∞n1sin(T2nπx)
傅里叶级数的逐点收敛
傅里叶级数部分和的表达式
接下来我们要研究的问题是:波浪号能够改为等号。与幂级数相比,傅里叶级数的部分和有其解析表达式:假设f(x)f(x)f(x)以2π2\pi2π为周期f(x)∼a0+∑n=1∞(ancosnx+bnsinnx) f(x)\sim a_0+\sum_{n=1}^\infty{(a_n\cos{nx}+b_n\sin{nx})} f(x)∼a0+n=1∑∞(ancosnx+bnsinnx)其中,部分和为Sn(x)=a0+∑k=1n(akcoskx+bksinkx)=12π∫−ππf(u)du+1π∑k=1n∫−ππf(u)(cosku.coskx+sinku.sinkx)=1π∫−ππf(u)(12+∑k=1ncosk(u−x))dx \begin{aligned} S_n(x)=a_0+\sum_{k=1}^{n}{(a_k\cos{kx}+b_k\sin{kx})}\\ =\frac{1}{2\pi}\int_{-\pi}^\pi{f(u)du}+\frac{1}{\pi}\sum_{k=1}^n{\int_{-\pi}^\pi{f(u)(\cos{ku}.\cos{kx}+\sin{ku}.\sin{kx})}}\\ =\frac{1}{\pi}\int_{-\pi}^\pi{f(u)(\frac{1}{2}+\sum_{k=1}^n{\cos{k(u-x)}})dx} \end{aligned} Sn(x)=a0+k=1∑n(akcoskx+bksinkx)=2π1∫−ππf(u)du+π1k=1∑n∫−ππf(u)(cosku.coskx+sinku.sinkx)=π1∫−ππf(u)(21+k=1∑ncosk(u−x))dx我们来推导如下的一个公式(12+∑k=1ncoskx)sinx2=12sinx2+12∑k=1n(sin1+2k2x−sin2k−12x)=12sin2n+12x (\frac{1}{2}+\sum_{k=1}^n{\cos{kx}})\sin{\frac{x}{2}}\\ =\frac{1}{2}\sin{\frac{x}{2}}+\frac{1}{2}\sum_{k=1}^n(\sin{\frac{1+2k}{2}x}-\sin{\frac{2k-1}{2}x})\\ =\frac{1}{2}\sin{\frac{2n+1}{2}x} (21+k=1∑ncoskx)sin2x=21sin2x+21k=1∑n(sin21+2kx−sin22k−1x)=21sin22n+1x因此12+∑k=1ncoskx=sin2n+12x2sinx2 \frac{1}{2}+\sum_{k=1}^n{\cos{kx}}=\frac{\sin{\frac{2n+1}{2}x}}{2\sin{\frac{x}{2}}} 21+k=1∑ncoskx=2sin2xsin22n+1x因此Sn(x)=1π∫−ππf(u)sin2n+12(u−x)2sinu−x2du S_n(x)=\frac{1}{\pi}\int_{-\pi}^\pi{f(u)\frac{\sin{\frac{2n+1}{2}(u-x)}}{2\sin{\frac{u-x}{2}}}du} Sn(x)=π1∫−ππf(u)2sin2u−xsin22n+1(u−x)du做变换t=u−xt=u-xt=u−xSn(x)=1π∫−π−xπ−xf(t+x)sin(n+12)t2sint2dx=1π∫−ππf(t+x)sin(n+12)t2sint2dx S_n(x)=\frac{1}{\pi}\int_{-\pi-x}^{\pi-x}{f(t+x)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dx}=\frac{1}{\pi}\int_{-\pi}^\pi{f(t+x)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dx} Sn(x)=π1∫−π−xπ−xf(t+x)2sin2tsin(n+21)tdx=π1∫−ππf(t+x)2sin2tsin(n+21)tdx做变换u=−tu=-tu=−t∫−π0f(t+x)sin(n+12)t2sint2dt=∫0πf(x−t)sin(n+12)t2sint2dt \int_{-\pi}^0{f(t+x)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt}=\int_0^{\pi}{f(x-t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} ∫−π0f(t+x)2sin2tsin(n+21)tdt=∫0πf(x−t)2sin2tsin(n+21)tdt因此Sn(x)=1π∫0π[f(x+t)+f(x−t)]sin(n+12)t2sint2dt S_n(x)=\frac{1}{\pi}\int_0^\pi{[f(x+t)+f(x-t)]\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} Sn(x)=π1∫0π[f(x+t)+f(x−t)]2sin2tsin(n+21)tdt现在,我们令f(x)=1f(x)=1f(x)=1,此时Sn(x)=1S_n(x)=1Sn(x)=1,这时,傅里叶级数是可以划等号的‾\underline{傅里叶级数是可以划等号的}傅里叶级数是可以划等号的,此时1π∫0πsin(n+12)tsint2dt=1 \frac{1}{\pi}\int_0^\pi{\frac{\sin{(n+\frac{1}{2})t}}{\sin\frac{t}{2}}dt}=1 π1∫0πsin2tsin(n+21)tdt=1现在,给定实数SSS,我们要验证Sn(x)−SS_n(x)-SSn(x)−S是否收敛到0Sn(x)−S=1π∫0π[f(x+t)+f(x−t)−2S]sin(n+12)t2sint2dt S_n(x)-S=\frac{1}{\pi}\int_0^\pi{[f(x+t)+f(x-t)-2S]\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} Sn(x)−S=π1∫0π[f(x+t)+f(x−t)−2S]2sin2tsin(n+21)tdt令ϕ(t)=f(x+t)+f(x−t)−2S\phi(t)=f(x+t)+f(x-t)-2Sϕ(t)=f(x+t)+f(x−t)−2S,此时Sn(x)−S=1π∫0πϕ(t)sin(n+12)t2sint2dt S_n(x)-S=\frac{1}{\pi}\int_0^\pi{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} Sn(x)−S=π1∫0πϕ(t)2sin2tsin(n+21)tdt
黎曼局部化定理
本节要证明的是一个非常令人诧异的事实:傅里叶级数的收敛性只与f(x)f(x)f(x)在某点的附近的性质有关,这从表面上看是得不出这个结论的。首先,傅里叶系数的表达式为{a0=12π∫−ππf(x)dxan=1π∫−ππf(x)cos(nx)dxn=1,2,⋯bn=1π∫−ππf(x)sin(nx)dxn=1,2,⋯
\begin{cases}
a_0=\frac{1}{2\pi}\int_{-\pi}^\pi{f(x)dx}\\
a_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(x)\cos{(nx)}dx}&n=1,2,\cdots\\
b_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(x)\sin{(nx)}dx}&n=1,2,\cdots
\end{cases}
⎩⎪⎨⎪⎧a0=2π1∫−ππf(x)dxan=π1∫−ππf(x)cos(nx)dxbn=π1∫−ππf(x)sin(nx)dxn=1,2,⋯n=1,2,⋯那么很自然,f(x)f(x)f(x)的傅里叶系数与f(x)f(x)f(x)在[−π,π][-\pi,\pi][−π,π]上的整体性质有关,下面要证明的一点是:f(x)f(x)f(x)在某点x0x_0x0的性质,只与f(x)f(x)f(x)在任意邻域(x0−δ,x0+δ)(x_0-\delta,x_0+\delta)(x0−δ,x0+δ)上局部性质有关,就是所谓的黎曼局部化。实际上,我们不改变f(x)f(x)f(x)在任意邻域(x0−δ,x0+δ)(x_0-\delta,x_0+\delta)(x0−δ,x0+δ)上的值,改变其他区域的值,所得傅里叶系数可能大不相同,但是在x0x_0x0局部,收敛性是一致的,这从表面上看是得不出了这个结论的。下面我们将要证明这个事实。\
我们这里假定f(x)f(x)f(x)在[−π,π][-\pi,\pi][−π,π]上黎曼可积‾\underline{黎曼可积}黎曼可积,或者虽然有有限个瑕点,但是∣f(x)∣|f(x)|∣f(x)∣的瑕积分是收敛的,称为绝对可积‾\underline{绝对可积}绝对可积。下面我们给出一个重要的定理。
定理12.2(黎曼-勒贝格引理)f(x)f(x)f(x)在[a,b][a,b][a,b]上黎曼可积或绝对可积,则limp→+∞∫abf(x)sin(px)dx=0 \lim_{p\to+\infty}\int_a^b{f(x)\sin{(px)}dx}=0 p→+∞lim∫abf(x)sin(px)dx=0limp→+∞∫abf(x)cos(px)dx=0 \lim_{p\to+\infty}\int_a^b{f(x)\cos{(px)}dx}=0 p→+∞lim∫abf(x)cos(px)dx=0
证:
仅证明前一个等式,后一个等式的证明是类似的。我们分两种情况证明:
第一种情况:若f(x)f(x)f(x)在[a,b][a,b][a,b]上黎曼可积,对任意的ε>0\varepsilon>0ε>0,取一分划δ:a=x0<x1<⋯<xn=n\delta:a=x_0<x_1<\cdots<x_n=nδ:a=x0<x1<⋯<xn=n,其中ωk\omega_kωk为f(x)f(x)f(x)在[xk−1,xk][x_{k-1},x_k][xk−1,xk]上的振幅,mkm_kmk为f(x)f(x)f(x)在[xk−1,xk][x_{k-1},x_k][xk−1,xk]上的下确界。要求该分划满足∑k=1nωkΔxk<ε2 \sum_{k=1}^n{\omega_k \Delta x_k}<\frac{\varepsilon}{2} k=1∑nωkΔxk<2ε由∫abf(x)sin(px)dx=∑k=1n∫xk−1xk(f(x)−mk)sin(px)dx+∑k=1nmk∫xk−1xksin(px)dx \int_a^b{f(x)\sin{(px)}dx}=\sum_{k=1}^n{\int_{x_{k-1}}^{x_k}{(f(x)-m_k)\sin(px)dx}}+\sum_{k=1}^n{m_k\int_{x_{k-1}}^{x_k}{\sin(px)dx}} ∫abf(x)sin(px)dx=k=1∑n∫xk−1xk(f(x)−mk)sin(px)dx+k=1∑nmk∫xk−1xksin(px)dx由于∣∫xk−1xksin(px)dx∣=∣cos(pxk−1)−cos(pxk)p∣≤2p |\int_{x_{k-1}}^{x_k}{\sin(px)dx}|=|\frac{\cos{(px_{k-1})}-\cos{(px_k)}}{p}|\le \frac{2}{p} ∣∫xk−1xksin(px)dx∣=∣pcos(pxk−1)−cos(pxk)∣≤p2∣∫abf(x)sin(px)dx∣≤∑k=1nωkΔxk+2∑k=1n∣mk∣p |\int_a^b{f(x)\sin{(px)}dx}|\le \sum_{k=1}^n{\omega_k \Delta x_k} + \frac{2\sum_{k=1}^n{|m_k|}}{p} ∣∫abf(x)sin(px)dx∣≤k=1∑nωkΔxk+p2∑k=1n∣mk∣当p>4∑k=1n∣mk∣ε\displaystyle p>\frac{4\sum_{k=1}^n{|m_k|}}{\varepsilon}p>ε4∑k=1n∣mk∣时,∣∫abf(x)sin(px)dx∣<ε\displaystyle|\int_a^b{f(x)\sin{(px)}dx}|<\varepsilon∣∫abf(x)sin(px)dx∣<ε。
当f(x)f(x)f(x)在[a,b][a,b][a,b]上绝对可积时,假设aaa是f(x)f(x)f(x)的唯一的瑕点,对任意的ε>0\varepsilon>0ε>0,存在δ>0\delta>0δ>0,使得∫aa+δ∣f(x)∣<ε2\displaystyle \int_{a}^{a+\delta}{|f(x)|}<\frac{\varepsilon}{2}∫aa+δ∣f(x)∣<2ε,取定δ\deltaδ,存在M>0M>0M>0,p>Mp>Mp>M时,∣∫a+δbf(x)sin(px)dx∣<ε2 |\int_{a+\delta}^b{f(x)\sin{(px)}dx}|<\frac{\varepsilon}{2} ∣∫a+δbf(x)sin(px)dx∣<2ε此时∣∫abf(x)sin(px)dx∣≤∣∫aa+δf(x)sin(px)dx∣+∣∫a+δbf(x)sin(px)dx∣<∫aa+δ∣f(x)∣dx+ε2<ε \begin{aligned} |\int_a^b{f(x)\sin{(px)}dx}|\le |\int_a^{a+\delta}{f(x)\sin{(px)}dx}|+|\int_{a+\delta}^b{f(x)\sin{(px)}dx}| \\< \int_a^{a+\delta}{{|f(x)|}dx} + \frac{\varepsilon}{2} <\varepsilon \end{aligned} ∣∫abf(x)sin(px)dx∣≤∣∫aa+δf(x)sin(px)dx∣+∣∫a+δbf(x)sin(px)dx∣<∫aa+δ∣f(x)∣dx+2ε<ε有限个瑕点的情况可以通过分割区间证得
前面我们已经求得了Sn(x)−S=1π∫0πϕ(t)sin(n+12)t2sint2dt S_n(x)-S=\frac{1}{\pi}\int_0^\pi{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} Sn(x)−S=π1∫0πϕ(t)2sin2tsin(n+21)tdt其中ϕ(t)=f(x+t)+f(x−t)−2S\phi(t)=f(x+t)+f(x-t)-2Sϕ(t)=f(x+t)+f(x−t)−2S,对δ>0\delta>0δ>0,在区间[δ,π][\delta,\pi][δ,π]上,12sint2\frac{1}{2\sin{\frac{t}{2}}}2sin2t1有界连续。若f(x)f(x)f(x)黎曼可积或绝对可积,此时,ϕ(t)\phi(t)ϕ(t)在[δ,π][\delta,\pi][δ,π]上也黎曼可积或绝对可积,由黎曼-勒贝格引理limn→∞1π∫δπϕ(t)sin(n+12)t2sint2dt=0 \lim_{n\to\infty}{ \frac{1}{\pi}\int_\delta^\pi{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} }=0 n→∞limπ1∫δπϕ(t)2sin2tsin(n+21)tdt=0从而,Sn−SS_n-SSn−S是否趋于0,取决于1π∫0δϕ(t)sin(n+12)t2sint2dt\displaystyle \frac{1}{\pi}\int_0^\delta{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt}π1∫0δϕ(t)2sin2tsin(n+21)tdt是否趋于0,而这只与f(t)f(t)f(t)在xxx附近的性质有关系。
傅里叶级数收敛性定理的证明
现在我们来讨论傅里叶级数的收敛性问题。我们首先,需要将2sint22\sin{\frac{t}{2}}2sin2t替换成ttt,实际上,∫0δϕ(t)sin(n+12)t2sint2dt−∫0δϕ(t)tsin(n+12)tdt=∫0δϕ(t)t−2sint22tsint2sin(n+12)tdt \int_0^\delta{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt}-\int_0^\delta{\frac{\phi(t)}{t}\sin{(n+\frac{1}{2})t}dt} =\int_0^\delta{\phi(t)\frac{t-2\sin{\frac{t}{2}}}{2t\sin{\frac{t}{2}}}\sin{(n+\frac{1}{2})t}dt} ∫0δϕ(t)2sin2tsin(n+21)tdt−∫0δtϕ(t)sin(n+21)tdt=∫0δϕ(t)2tsin2tt−2sin2tsin(n+21)tdt由于limt→0t−2sint22tsint2=limt→0t−2sint2t2=limt→01−cost22t=0 \lim_{t\to 0}{\frac{t-2\sin{\frac{t}{2}}}{2t\sin{\frac{t}{2}}}} =\lim_{t\to 0}{\frac{t-2\sin{\frac{t}{2}}}{t^2}} =\lim_{t\to 0}{\frac{1-\cos{\frac{t}{2}}}{2t}} =0 t→0lim2tsin2tt−2sin2t=t→0limt2t−2sin2t=t→0lim2t1−cos2t=0因此,函数t−2sint22tsint2\frac{t-2\sin{\frac{t}{2}}}{2t\sin{\frac{t}{2}}}2tsin2tt−2sin2t在(−∞,+∞)(-\infty,+\infty)(−∞,+∞)上都连续,ϕ(t)\phi(t)ϕ(t)黎曼可积或绝对可积,由黎曼勒贝格引理limn→∞∫0δϕ(t)t−2sint22tsint2sin(n+12)tdt=0 \lim_{n\to\infty}{ \int_0^\delta{\phi(t)\frac{t-2\sin{\frac{t}{2}}}{2t\sin{\frac{t}{2}}}\sin{(n+\frac{1}{2})t}dt} }=0 n→∞lim∫0δϕ(t)2tsin2tt−2sin2tsin(n+21)tdt=0这说明了∫0δϕ(t)sin(n+12)t2sint2dt\displaystyle \int_0^\delta{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt}∫0δϕ(t)2sin2tsin(n+21)tdt和∫0δϕ(t)tsin(n+12)tdt\displaystyle \int_0^\delta{\frac{\phi(t)}{t}\sin{(n+\frac{1}{2})t}dt}∫0δtϕ(t)sin(n+21)tdt同敛散且极限相同。于是,可以很容易的就得到如下结论
定理12.3 (迪尼判别法) 如果ϕ(t)t\frac{\phi(t)}{t}tϕ(t)在[0,δ][0,\delta][0,δ]上黎曼可积或绝对可积,则limn→∞Sn(x)=S \lim_{n\to\infty}{S_n(x)}=S n→∞limSn(x)=S
我们可以借助瑕积分的比较判别法来对傅里叶级数的收敛性进行判定。下一个问题是,SSS该如何选择?实际上,如果f(t)f(t)f(t)在xxx处连续,令S=f(x)S=f(x)S=f(x),此时ϕ(t)=f(x−t)+f(x+t)−2f(x)t \phi(t)=\frac{f(x-t)+f(x+t)-2f(x)}{t} ϕ(t)=tf(x−t)+f(x+t)−2f(x)如果f(t)f(t)f(t)在xxx处不连续,但左右极限都存在,则可以令S=f(x+0)+f(x−0)2S=\frac{f(x+0)+f(x-0)}{2}S=2f(x+0)+f(x−0),此时ϕ(t)=f(x−t)−f(x−0)t+f(x+t)−f(x+0)t \phi(t)=\frac{f(x-t)-f(x-0)}{t}+\frac{f(x+t)-f(x+0)}{t} ϕ(t)=tf(x−t)−f(x−0)+tf(x+t)−f(x+0)令ϕ−(t)=f(x−t)−f(x−0)t,ϕ+(t)=f(x+t)−f(x+0)t\phi^-(t)=\frac{f(x-t)-f(x-0)}{t},\phi^+(t)=\frac{f(x+t)-f(x+0)}{t}ϕ−(t)=tf(x−t)−f(x−0),ϕ+(t)=tf(x+t)−f(x+0),这类似于广义的左右导数。如果两者都绝对可积或黎曼可积,那么傅里叶级数自然收敛于SSS,实际上,不论连续与否,只要左右极限都存在,则ϕ(t)=ϕ+(t)+ϕ−(t)\phi(t)=\phi^+(t)+\phi^-(t)ϕ(t)=ϕ+(t)+ϕ−(t),我们要求两者都绝对可积或黎曼可积。
定理12.4 (利普希茨判别法) f(x)f(x)f(x)是以2π2\pi2π为周期的函数,并且在[−π,π][-\pi,\pi][−π,π]上只有有限个第一类间断点。若对于x∈[−π,π]x\in [-\pi,\pi]x∈[−π,π],存在M1,M2>0M_1,M_2>0M1,M2>0及α1,α2>0\alpha_1,\alpha_2 >0α1,α2>0,使得对任意的t>0t>0t>0∣f(x+t)−f(x)∣≤M1tα1 |f(x+t)-f(x)|\le M_1t^{\alpha_1} ∣f(x+t)−f(x)∣≤M1tα1∣f(x−t)−f(x)∣≤M2tα2 |f(x-t)-f(x)|\le M_2t^{\alpha_2} ∣f(x−t)−f(x)∣≤M2tα2则f(x)f(x)f(x)的傅里叶级数在xxx处收敛于S=f(x+0)+f(x−0)2S=\frac{f(x+0)+f(x-0)}{2}S=2f(x+0)+f(x−0)
证:
∣ϕ+(t)∣≤M1tα1−1 |\phi^+(t)|\le M_1 t^{\alpha_1 - 1} ∣ϕ+(t)∣≤M1tα1−1∣ϕ−(t)∣≤M2tα2−1 |\phi^-(t)|\le M_2 t^{\alpha_2 - 1} ∣ϕ−(t)∣≤M2tα2−1由比较判别法ϕ+(t),ϕ−(t)\phi^+(t),\phi^-(t)ϕ+(t),ϕ−(t)都绝对可积或黎曼可积,从而ϕ(t)\phi(t)ϕ(t)绝对可积或黎曼可积
下面我们引入逐段可微的概念,所谓逐段可微,即满足:
(1)f(x)f(x)f(x)在[a,b][a,b][a,b]上只有有限个第一类间断点a=x0≤x1<x2<⋯<xn−1≤b=xna=x_0\le x_1<x_2<\cdots<x_{n-1} \le b=x_na=x0≤x1<x2<⋯<xn−1≤b=xn
(2)在(xk−1,xk)(x_{k-1},x_k)(xk−1,xk)上,f(x)f(x)f(x)可微
(3)在xkx_kxk上,两个极限limt→0+f(xk+t)−f(xk+0)t,limt→0+f(xk−t)−f(xk−0)t\displaystyle \lim_{t\to 0^+}{\frac{f(x_k+t)-f(x_k+0)}{t}},\lim_{t\to 0^+}{\frac{f(x_k-t)-f(x_k-0)}{t}}t→0+limtf(xk+t)−f(xk+0),t→0+limtf(xk−t)−f(xk−0)都存在
就有如下的收敛定理:
定理12.5 f(x)f(x)f(x)是以2π2\pi2π为周期的函数,在[−π,π][-\pi,\pi][−π,π]上逐段可微,则若f(x)∼a0+∑n=1∞(ancos(nx)+bnsin(nx)) f(x)\sim a_0+\sum_{n=1}^\infty{(a_n\cos(nx)+b_n\sin(nx))} f(x)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))则a0+∑n=1∞(ancos(nx)+bnsin(nx))=f(x−0)+f(x+0)2 a_0+\sum_{n=1}^\infty{(a_n\cos(nx)+b_n\sin(nx))=\frac{f(x-0)+f(x+0)}{2}} a0+n=1∑∞(ancos(nx)+bnsin(nx))=2f(x−0)+f(x+0)
例12.6 计算级数∑n=1∞1n2,∑n=1∞(−1)nn2,∑n=1∞1n4,∑n=1∞(−1)2n4\displaystyle \sum_{n=1}^\infty{\frac{1}{n^2}}, \sum_{n=1}^\infty{\frac{(-1)^n}{n^2}}, \sum_{n=1}^\infty{\frac{1}{n^4}}, \sum_{n=1}^\infty{\frac{(-1)^2}{n^4}}n=1∑∞n21,n=1∑∞n2(−1)n,n=1∑∞n41,n=1∑∞n4(−1)2
解:
前面我们已经求出了x2,x4(x∈[−π,π])x^2,x^4(x\in[-\pi,\pi])x2,x4(x∈[−π,π])的傅里叶级数,分别是:x2∼π23+∑n=1∞(4(−1)nn2)cos(nx) x^2\sim\frac{\pi^2}{3}+\sum_{n=1}^\infty(\frac{4(-1)^n}{n^2})\cos{(nx)} x2∼3π2+n=1∑∞(n24(−1)n)cos(nx)x4∼π45+∑n=1∞(8π2(−1)nn2−48(−1)nn4)cos(nx) x^4\sim\frac{\pi^4}{5}+\sum_{n=1}^\infty(\frac{8\pi^2(-1)^n}{n^2}-\frac{48(-1)^n}{n^4})\cos{(nx)} x4∼5π4+n=1∑∞(n28π2(−1)n−n448(−1)n)cos(nx)由于这两个函数在延拓之后在全空间连续,并且逐段可微,因此x2=π23+∑n=1∞(4(−1)nn2)cos(nx) x^2=\frac{\pi^2}{3}+\sum_{n=1}^\infty(\frac{4(-1)^n}{n^2})\cos{(nx)} x2=3π2+n=1∑∞(n24(−1)n)cos(nx)x4=π45+∑n=1∞(8π2(−1)nn2−48(−1)nn4)cos(nx) x^4=\frac{\pi^4}{5}+\sum_{n=1}^\infty(\frac{8\pi^2(-1)^n}{n^2}-\frac{48(-1)^n}{n^4})\cos{(nx)} x4=5π4+n=1∑∞(n28π2(−1)n−n448(−1)n)cos(nx)令x=0x=0x=0,有0=π23+4∑n=1∞(−1)nn2 0=\frac{\pi^2}{3}+4\sum_{n=1}^\infty{\frac{(-1)^n}{n^2}} 0=3π2+4n=1∑∞n2(−1)n从而∑n=1∞(−1)nn2=−π212\displaystyle \sum_{n=1}^\infty{\frac{(-1)^n}{n^2}}=-\frac{\pi^2}{12}n=1∑∞n2(−1)n=−12π2,令x=πx=\pix=π,得π2=π23+4∑n=1∞1n2 \pi^2=\frac{\pi^2}{3}+4\sum_{n=1}^\infty{\frac{1}{n^2}} π2=3π2+4n=1∑∞n21从而∑n=1∞1n2=π26\displaystyle \sum_{n=1}^\infty{\frac{1}{n^2}}=\frac{\pi^2}{6}n=1∑∞n21=6π2,令x=0x=0x=0,有0=π45+8∑n=1∞(−1)nn2−48∑n=1∞(−1)nn4 0=\frac{\pi^4}{5}+8\sum_{n=1}^\infty{\frac{(-1)^n}{n^2}}-48\sum_{n=1}^\infty{\frac{(-1)^n}{n^4}} 0=5π4+8n=1∑∞n2(−1)n−48n=1∑∞n4(−1)n将∑n=1∞(−1)nn2=−π212\displaystyle \sum_{n=1}^\infty{\frac{(-1)^n}{n^2}}=-\frac{\pi^2}{12}n=1∑∞n2(−1)n=−12π2代入,得到∑n=1∞(−1)nn4=−7π4720\displaystyle \sum_{n=1}^\infty{\frac{(-1)^n}{n^4}}=-\frac{7\pi^4}{720}n=1∑∞n4(−1)n=−7207π4,令x=πx=\pix=π,得到π4=π45+8∑n=1∞1n2−48∑n=1∞1n4 \pi^4=\frac{\pi^4}{5}+8\sum_{n=1}^\infty{\frac{1}{n^2}}-48\sum_{n=1}^\infty{\frac{1}{n^4}} π4=5π4+8n=1∑∞n21−48n=1∑∞n41将∑n=1∞1n2=π26\displaystyle \sum_{n=1}^\infty{\frac{1}{n^2}}=\frac{\pi^2}{6}n=1∑∞n21=6π2代入,得到∑n=1∞1n4=π490\displaystyle \sum_{n=1}^\infty{\frac{1}{n^4}}=\frac{\pi^4}{90}n=1∑∞n41=90π4
例12.7 求f(x)=ex,x∈(−π,π)f(x)=e^x,x\in(-\pi,\pi)f(x)=ex,x∈(−π,π)的傅里叶级数,并借此求解级数∑n=1∞11+n2\displaystyle \sum_{n=1}^\infty{\frac{1}{1+n^2}}n=1∑∞1+n21
解:
先求解傅里叶级数,得到f(x)∼eπ−e−π2π+eπ−e−ππ∑n=1∞(−1)nn2+1[cos(nx)−nsin(nx)] f(x)\sim \frac{e^\pi-e^{-\pi}}{2\pi}+\frac{e^\pi-e^{-\pi}}{\pi}\sum_{n=1}^\infty\frac{(-1)^n}{n^2+1}[\cos{(nx)}-n\sin{(nx)}] f(x)∼2πeπ−e−π+πeπ−e−πn=1∑∞n2+1(−1)n[cos(nx)−nsin(nx)]f(x)f(x)f(x)在[−π,π][-\pi,\pi][−π,π]上逐段可微,因此eπ−e−π2π+eπ−e−ππ∑n=1∞(−1)nn2+1[cos(nx)−nsin(nx)]={ex−π<x<πeπ+e−π2x=π \frac{e^\pi-e^{-\pi}}{2\pi}+\frac{e^\pi-e^{-\pi}}{\pi}\sum_{n=1}^\infty\frac{(-1)^n}{n^2+1}[\cos{(nx)}-n\sin{(nx)}]=\begin{cases} e^x&-\pi<x<\pi\\ \frac{e^\pi+e^{-\pi}}{2}&x=\pi \end{cases} 2πeπ−e−π+πeπ−e−πn=1∑∞n2+1(−1)n[cos(nx)−nsin(nx)]={ex2eπ+e−π−π<x<πx=π令x=πx=\pix=π,从而得到eπ+e−π2=eπ−e−π2π+eπ−e−ππ∑n=1∞1n2+1 \frac{e^\pi+e^{-\pi}}{2}=\frac{e^\pi-e^{-\pi}}{2\pi}+\frac{e^\pi-e^{-\pi}}{\pi}\sum_{n=1}^\infty{\frac{1}{n^2+1}} 2eπ+e−π=2πeπ−e−π+πeπ−e−πn=1∑∞n2+11因此,∑n=1∞1n2+1=π2eπ+e−πeπ−e−π−12\displaystyle \sum_{n=1}^\infty{\frac{1}{n^2+1}} =\frac{\pi}{2}\frac{e^\pi+e^{-\pi}}{e^\pi-e^{-\pi}}-\frac{1}{2}n=1∑∞n2+11=2πeπ−e−πeπ+e−π−21
例12.8 f(x)=cosαx,x∈(−π,π)f(x)=\cos{\alpha x},x\in (-\pi,\pi)f(x)=cosαx,x∈(−π,π),其中α>0\alpha>0α>0,且不为整数,求f(x)f(x)f(x)的傅里叶级数,同时证明:当z≠kπ,k=0,±1,±2,⋯z \neq k\pi,k=0,\pm 1,\pm 2,\cdotsz=kπ,k=0,±1,±2,⋯时,有1sinz=1z+∑n=1∞2z(−1)nz2−n2π2 \frac{1}{\sin{z}}=\frac{1}{z}+\sum_{n=1}^\infty\frac{2z(-1)^n}{z^2-n^2\pi^2} sinz1=z1+n=1∑∞z2−n2π22z(−1)ncoszsinz=1z+∑n=1∞2zz2−n2π2 \frac{\cos{z}}{\sin{z}}=\frac{1}{z}+\sum_{n=1}^\infty\frac{2z}{z^2-n^2\pi^2} sinzcosz=z1+n=1∑∞z2−n2π22z
解:
首先求解傅里叶级数,求得傅里叶级数为f(x)∼sin(απ)απ+2αsin(απ)π∑n=1∞(−1)nα2−n2cos(nx) f(x)\sim \frac{\sin{(\alpha \pi)}}{\alpha \pi} +2\frac{\alpha \sin{(\alpha \pi)}}{\pi}\sum_{n=1}^\infty\frac{(-1)^n}{\alpha^2-n^2}\cos{(nx)} f(x)∼απsin(απ)+2παsin(απ)n=1∑∞α2−n2(−1)ncos(nx)首先令x=0x=0x=0,得到1=sinαππ[1α+∑n=1∞2α(−1)nα2−n2] 1=\frac{\sin{\alpha \pi}}{\pi}[\frac{1}{\alpha}+\sum_{n=1}^\infty \frac{2\alpha(-1)^n}{\alpha^2-n^2}] 1=πsinαπ[α1+n=1∑∞α2−n22α(−1)n]令z=απz=\alpha\piz=απ,代入就得到1sinz=1z+∑n=1∞2z(−1)nz2−n2π2 \frac{1}{\sin{z}}=\frac{1}{z}+\sum_{n=1}^\infty\frac{2z(-1)^n}{z^2-n^2\pi^2} sinz1=z1+n=1∑∞z2−n2π22z(−1)n令x=πx=\pix=π,得到cosαπ=sinαππ[1α+∑n=1∞2αα2−n2] \cos{\alpha \pi}=\frac{\sin{\alpha \pi}}{\pi}[\frac{1}{\alpha}+\sum_{n=1}^\infty \frac{2\alpha}{\alpha^2-n^2}] cosαπ=πsinαπ[α1+n=1∑∞α2−n22α]令z=απz=\alpha\piz=απ,代入就得到coszsinz=1z+∑n=1∞2zz2−n2π2 \frac{\cos{z}}{\sin{z}}=\frac{1}{z}+\sum_{n=1}^\infty\frac{2z}{z^2-n^2\pi^2} sinzcosz=z1+n=1∑∞z2−n2π22z
傅里叶级数的其他收敛性
一致收敛性
在前面我们证明了,只要limn→∞an=a\displaystyle \lim_{n\to\infty}{a_n}=an→∞liman=a,则limn→∞a1+a2+⋯+ann=a\displaystyle \lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=an→∞limna1+a2+⋯+an=a,反之不成立,说明算数平均序列比原序列有更好的收敛性。傅里叶级数也是如此,对于周期为2π2\pi2π的连续函数f(x)f(x)f(x)f(x)∼a0+∑n=1∞(ancos(nx)+bnsin(nx)) f(x)\sim a_0+\sum_{n=1}^\infty{(a_n\cos{(nx)}+b_n\sin{(nx)})} f(x)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))前面已经推导出Sn(x)=a0+∑k=1n(akcos(kx)+bksin(nx))=1π∫−ππf(x+t)sin(n+12)t2sint2dt S_n(x)=a_0+\sum_{k=1}^n{(a_k\cos{(kx)}+b_k\sin(nx))}\\=\frac{1}{\pi}\int_{-\pi}^\pi{ f(x+t)\frac{ \sin(n+\frac{1}{2})t } { 2\sin\frac{t}{2} }dt } Sn(x)=a0+k=1∑n(akcos(kx)+bksin(nx))=π1∫−ππf(x+t)2sin2tsin(n+21)tdt令Kn(x)=S0(x)+S1(x)+⋯+Sn(x)n+1=1(n+1)π∫−ππf(x+t)∑k=0nsin(k+12)t2sin(t2)dt K_n(x)=\frac{S_0(x)+S_1(x)+\cdots+S_n(x)}{n+1}\\=\frac{1}{(n+1)\pi}\int_{-\pi}^\pi{ f(x+t)\frac{ \sum_{k=0}^n{\sin(k+\frac{1}{2})t} }{ 2\sin(\frac{t}{2}) }dt } Kn(x)=n+1S0(x)+S1(x)+⋯+Sn(x)=(n+1)π1∫−ππf(x+t)2sin(2t)∑k=0nsin(k+21)tdt而sin(t2)∑k=0nsin(k+12)t=12∑k=0n(cos(kt)−cos(k+1)t)=1−cos(n+1)t2=sin2(n+1)t2 \sin(\frac{t}{2})\sum_{k=0}^n{\sin(k+\frac{1}{2})t}=\frac{1}{2}\sum_{k=0}^n(\cos(kt)-\cos(k+1)t) \\=\frac{1-\cos(n+1)t}{2}=\sin^2\frac{(n+1)t}{2} sin(2t)k=0∑nsin(k+21)t=21k=0∑n(cos(kt)−cos(k+1)t)=21−cos(n+1)t=sin22(n+1)t因此Kn(x)=1(n+1)π∫−ππf(x+t)sin2(n+1)t22sin2(t2)dt K_n(x)=\frac{1}{(n+1)\pi}\int_{-\pi}^\pi{ f(x+t)\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt } Kn(x)=(n+1)π1∫−ππf(x+t)2sin2(2t)sin22(n+1)tdt令f(x)=1f(x)=1f(x)=1,Kn(x)=1K_n(x)=1Kn(x)=1,因此1(n+1)π∫−ππsin2(n+1)t22sin2(t2)dt=1 \frac{1}{(n+1)\pi}\int_{-\pi}^\pi{ \frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt }=1 (n+1)π1∫−ππ2sin2(2t)sin22(n+1)tdt=1Kn(x)−f(x)=1(n+1)π∫−ππ[f(x+t)−f(x)]sin2(n+1)t22sin2(t2)dt K_n(x)-f(x)=\frac{1}{(n+1)\pi}\int_{-\pi}^\pi{ [f(x+t)-f(x)]\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt } Kn(x)−f(x)=(n+1)π1∫−ππ[f(x+t)−f(x)]2sin2(2t)sin22(n+1)tdt作积分变换,得到Kn(x)−f(x)=1(n+1)π∫−ππ[f(x+t)−f(x)]sin2(n+1)t22sin2(t2)dt=1(n+1)π∫0π[f(x+t)+f(x−t)−2f(x)]sin2(n+1)t22sin2(t2)dt K_n(x)-f(x)=\frac{1}{(n+1)\pi}\int_{-\pi}^\pi{ [f(x+t)-f(x)]\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt }\\=\frac{1}{(n+1)\pi}\int_0^\pi{ [f(x+t)+f(x-t)-2f(x)]\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt } Kn(x)−f(x)=(n+1)π1∫−ππ[f(x+t)−f(x)]2sin2(2t)sin22(n+1)tdt=(n+1)π1∫0π[f(x+t)+f(x−t)−2f(x)]2sin2(2t)sin22(n+1)tdt下面我们证明以下的定理
定理12.6 f(x)f(x)f(x)是以2π2\pi2π为周期的连续函数,并且f(x)∼a0+∑n=1∞(ancos(nx)+bnsin(nx)) f(x)\sim a_0+\sum_{n=1}^\infty(a_n\cos(nx)+b_n\sin(nx)) f(x)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))令Sn(x)=a0+∑k=1n(akcos(kx)+bksin(nx))S_n(x)=a_0+\sum_{k=1}^n{(a_k\cos{(kx)}+b_k\sin(nx))}Sn(x)=a0+∑k=1n(akcos(kx)+bksin(nx)),Kn(x)=S0(x)+S1(x)+⋯+Sn(x)n+1K_n(x)=\frac{S_0(x)+S_1(x)+\cdots+S_n(x)}{n+1}Kn(x)=n+1S0(x)+S1(x)+⋯+Sn(x),则{Kn(x)}\{K_n(x)\}{Kn(x)}一致收敛到f(x)f(x)f(x)
证:
由于f(x)f(x)f(x)以2π2\pi2π为周期且连续,因此f(x)f(x)f(x)在(−∞,∞)(-\infty,\infty)(−∞,∞)上一致连续。∀ε>0\forall \varepsilon >0∀ε>0,∃δ>0\exists \delta>0∃δ>0,当∣x1−x2∣<δ|x_1-x_2|<\delta∣x1−x2∣<δ时,有∣f(x1)−f(x2)∣<ε4|f(x_1)-f(x_2)| < \frac{\varepsilon}{4}∣f(x1)−f(x2)∣<4ε,则1(n+1)π∫0δ[f(x+t)+f(x−t)−2f(x)]sin2(n+1)t22sin2(t2)dt≤1(n+1)π∫0δ[∣f(x+t)−f(x)∣+∣f(x−t)−f(x)∣]sin2(n+1)t22sin2(t2)dt≤ε21(n+1)π∫0δsin2(n+1)t22sin2(t2)dt≤ε21(n+1)π∫−ππsin2(n+1)t22sin2(t2)dt=ε2 \frac{1}{(n+1)\pi}\int_0^\delta{ [f(x+t)+f(x-t)-2f(x)]\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt }\\\le \frac{1}{(n+1)\pi}\int_0^\delta{ [|f(x+t)-f(x)|+|f(x-t)-f(x)|]\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt }\\ \le\frac{\varepsilon}{2}\frac{1}{(n+1)\pi}\int_0^\delta\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt \le\frac{\varepsilon}{2}\frac{1}{(n+1)\pi}\int_{-\pi}^\pi\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt=\frac{\varepsilon}{2} (n+1)π1∫0δ[f(x+t)+f(x−t)−2f(x)]2sin2(2t)sin22(n+1)tdt≤(n+1)π1∫0δ[∣f(x+t)−f(x)∣+∣f(x−t)−f(x)∣]2sin2(2t)sin22(n+1)tdt≤2ε(n+1)π1∫0δ2sin2(2t)sin22(n+1)tdt≤2ε(n+1)π1∫−ππ2sin2(2t)sin22(n+1)tdt=2ε作估计∣sin(n+1)t22(n+1)sint2∣≤(n+1)t22(n+1)sint2=t4sint2 |\frac {\sin\frac{(n+1)t}{2}} {2(n+1)\sin\frac{t}{2}}|\le \frac {\frac{(n+1)t}{2}} {2(n+1)\sin\frac{t}{2}}=\frac{t}{4\sin{\frac{t}{2}}} ∣2(n+1)sin2tsin2(n+1)t∣≤2(n+1)sin2t2(n+1)t=4sin2tt在[δ,π][\delta,\pi][δ,π]上,令ϕ(t)=f(x+t)+f(x−t)−2f(x)\phi(t)=f(x+t)+f(x-t)-2f(x)ϕ(t)=f(x+t)+f(x−t)−2f(x),由于f(x)f(x)f(x)是以2π2\pi2π为周期的函数,f(x)f(x)f(x)有界,设f(x)≤Mf(x)\le Mf(x)≤M,则∣ϕ(t)∣≤4M|\phi(t)|\le 4M∣ϕ(t)∣≤4M,则∣1(n+1)π∫δπϕ(t)sin2(n+1)t22sin2t2dt∣≤2Mπ∫δπtsin2t2sin(n+1)t2dt \left|\frac{1}{(n+1)\pi}\int_\delta^\pi\phi(t)\frac{\sin^2\frac{(n+1)t}{2}}{2\sin^2\frac{t}{2}}dt\right|\le \frac{2M}{\pi}\int_\delta^\pi\frac{t}{\sin^2\frac{t}{2}}\sin\frac{(n+1)t}{2}dt ∣∣∣∣∣(n+1)π1∫δπϕ(t)2sin22tsin22(n+1)tdt∣∣∣∣∣≤π2M∫δπsin22ttsin2(n+1)tdt由于tsin2t2\frac{t}{\sin^2\frac{t}{2}}sin22tt在[δ,π][\delta,\pi][δ,π]上连续,由黎曼勒贝格引理,存在NNN,n≥Nn\ge Nn≥N时,就有∫δπtsin2t2sin(n+1)t2dt<πε4M \int_\delta^\pi\frac{t}{\sin^2\frac{t}{2}}\sin\frac{(n+1)t}{2}dt<\frac{\pi\varepsilon}{4M} ∫δπsin22ttsin2(n+1)tdt<4Mπε此时就有∣1(n+1)π∫δπϕ(t)sin2(n+1)t22sin2t2dt∣<ε2\displaystyle \left|\frac{1}{(n+1)\pi}\int_\delta^\pi\phi(t)\frac{\sin^2\frac{(n+1)t}{2}}{2\sin^2\frac{t}{2}}dt\right|<\frac{\varepsilon}{2}∣∣∣∣∣(n+1)π1∫δπϕ(t)2sin22tsin22(n+1)tdt∣∣∣∣∣<2ε,因此,对任意的x∈Rx\in Rx∈R,n≥Nn\ge Nn≥N时,都有∣Kn(x)−f(x)∣≤∣1(n+1)π∫0δϕ(t)sin2(n+1)t22sin2t2dt∣+∣1(n+1)π∫δπϕ(t)sin2(n+1)t22sin2t2dt∣<ε |K_n(x)-f(x)|\le \left|\frac{1}{(n+1)\pi}\int_0^\delta\phi(t)\frac{\sin^2\frac{(n+1)t}{2}}{2\sin^2\frac{t}{2}}dt\right|\\+\left|\frac{1}{(n+1)\pi}\int_\delta^\pi\phi(t)\frac{\sin^2\frac{(n+1)t}{2}}{2\sin^2\frac{t}{2}}dt\right| <\varepsilon ∣Kn(x)−f(x)∣≤∣∣∣∣∣(n+1)π1∫0δϕ(t)2sin22tsin22(n+1)tdt∣∣∣∣∣+∣∣∣∣∣(n+1)π1∫δπϕ(t)2sin22tsin22(n+1)tdt∣∣∣∣∣<ε
注意到Kn(x)K_n(x)Kn(x)是一个次数不超过nnn的三角多项式,Kn(x)K_n(x)Kn(x)一致收敛到f(x)f(x)f(x),可以理解为用一系列三角多项式逼近f(x)f(x)f(x),于是就有
推论12.1 f(x)f(x)f(x)是以2π2\pi2π为周期的连续函数,则f(x)f(x)f(x)在(−∞,∞)(-\infty,\infty)(−∞,∞)上可被三角多项式逼近
推论12.2 f(x)f(x)f(x)是以2π2\pi2π为周期的连续函数,若其傅里叶系数全为0,则f(x)f(x)f(x)恒为0
证:由于f(x)f(x)f(x)是以2π2\pi2π为周期的连续函数,且傅里叶系数全为0,则∀x∈R\forall x \in R∀x∈R,Kn(x)=0K_n(x)=0Kn(x)=0,而limn→∞Kn(x)=f(x)=0\displaystyle\lim_{n\to\infty}K_n(x)=f(x)=0n→∞limKn(x)=f(x)=0
均方收敛
现在我们考虑以2π2\pi2π为周期的函数f(x)f(x)f(x),如果f(x)f(x)f(x)在[−π,π][-\pi,\pi][−π,π]上黎曼可积,f2(x)f^2(x)f2(x)在[−π,π][-\pi,\pi][−π,π]上也黎曼可积,若f(x)f(x)f(x)在[−π,π][-\pi,\pi][−π,π]上绝对可积,我们要求f2(x)f^2(x)f2(x)在[−π,π][-\pi,\pi][−π,π]上也收敛,这两种情况我们统称为平方可积‾\underline{平方可积}平方可积。如果定义两个函数之间的内积为(f,g)=∫−ππf(x)g(x)dx\displaystyle(f,g)=\int_{-\pi}^\pi f(x)g(x)dx(f,g)=∫−ππf(x)g(x)dx,两个函数的距离定义为(f−g,f−g)\sqrt{(f-g,f-g)}(f−g,f−g)。现在,我们想要寻找一个nnn次三角多项式Sn(x)=a0∗+∑k=1n(ak∗cos(kx)+bk∗sin(kx))
S_n(x)=a_0^*+\sum_{k=1}^n(a_k^*\cos(kx)+b_k^*\sin(kx))
Sn(x)=a0∗+k=1∑n(ak∗cos(kx)+bk∗sin(kx))使得f(x)f(x)f(x)与Sn(x)S_n(x)Sn(x)的距离最短,那么系数应当怎么定呢?实际上(f(x)−Sn(x),f(x)−Sn(x))=(f(x),f(x))−2(f(x),Sn(x))+(Sn(x),Sn(x))
(f(x)-S_n(x),f(x)-S_n(x))\\=(f(x),f(x))-2(f(x),S_n(x))+(S_n(x),S_n(x))
(f(x)−Sn(x),f(x)−Sn(x))=(f(x),f(x))−2(f(x),Sn(x))+(Sn(x),Sn(x))在上式中(f(x),f(x))=∫−ππf2(x)dx
(f(x),f(x))=\int_{-\pi}^\pi{f^2(x)dx}
(f(x),f(x))=∫−ππf2(x)dx(f(x),Sn(x))=π∑k=1n(ak∗ak+bk∗bk)+2πa0∗a0
(f(x),S_n(x))=\pi\sum_{k=1}^n(a_k^*a_k+b_k^*b_k)+2\pi a_0^*a_0
(f(x),Sn(x))=πk=1∑n(ak∗ak+bk∗bk)+2πa0∗a0(Sn(x),Sn(x))=2πa0∗2+π∑k=1n(an∗2+bn∗2)
(S_n(x),S_n(x))=2\pi a_0^{*2}+\pi\sum_{k=1}^n(a_n^{*2}+b_n^{*2})
(Sn(x),Sn(x))=2πa0∗2+πk=1∑n(an∗2+bn∗2)于是(f−Sn,f−Sn)=2π(a0∗2−2a0∗a0)+π∑k=1n[(ak∗2−2ak∗ak)+(bk∗2−2bk∗bk)]+∫−ππf2(x)dx
(f-S_n,f-S_n)=2\pi(a_0^{*2}-2a_0^*a_0)+
\\\pi\sum_{k=1}^n[(a_k^{*2}-2a_k^*a_k)+(b_k^{*2}-2b_k^*b_k)]+\int_{-\pi}^\pi f^2(x)dx
(f−Sn,f−Sn)=2π(a0∗2−2a0∗a0)+πk=1∑n[(ak∗2−2ak∗ak)+(bk∗2−2bk∗bk)]+∫−ππf2(x)dx很容易看出,当ak∗=ak,k=0,1,⋯ ,na_k^*=a_k,k=0,1,\cdots,nak∗=ak,k=0,1,⋯,n,bk∗=bk,k=1,⋯ ,nb_k^*=b^k,k=1,\cdots,nbk∗=bk,k=1,⋯,n时,(f−Sn,f−Sn)(f-S_n,f-S_n)(f−Sn,f−Sn)最小,此时(f−Sn,f−Sn)=−2πa02−π∑k=1n(ak2+bk2)+∫−ππf2(x)dx≥0
(f-S_n,f-S_n)=-2\pi a_0^2-\pi \sum_{k=1}^n(a_k^2+b_k^2)+\int_{-\pi}^\pi f^2(x)dx\ge 0
(f−Sn,f−Sn)=−2πa02−πk=1∑n(ak2+bk2)+∫−ππf2(x)dx≥0就得到不等式1π∫−ππf2(x)dx≥2a02+∑k=1n(ak2+bk2)
\frac{1}{\pi}\int_{-\pi}^\pi f^2(x)dx\ge 2a_0^2+\sum_{k=1}^n(a_k^2+b_k^2)
π1∫−ππf2(x)dx≥2a02+k=1∑n(ak2+bk2)并且这对任意的nnn都成立,这说明级数2a02+∑n=1∞(an2+bn2)\displaystyle 2a_0^2+\sum_{n=1}^\infty(a_n^2+b_n^2)2a02+n=1∑∞(an2+bn2)绝对收敛,并且2a02+∑n=1∞(an2+bn2)≤1π∫−ππf2(x)dx
2a_0^2+\sum_{n=1}^\infty(a_n^2+b_n^2) \le \frac{1}{\pi}\int_{-\pi}^\pi f^2(x)dx
2a02+n=1∑∞(an2+bn2)≤π1∫−ππf2(x)dx
定理12.7(Bassel不等式) 若绝对可积函数f(x)f(x)f(x)以2π2\pi2π为周期,且在[−π,π][-\pi,\pi][−π,π]上平方可积,f(x)∼a0+∑n=1∞(ancos(nx)+bnsin(nx))
f(x)\sim a_0+\sum_{n=1}^\infty{(a_n\cos(nx)+b_n\sin(nx))}
f(x)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))则级数2a02+∑n=1∞(an2+bn2)\displaystyle 2a_0^2+\sum_{n=1}^\infty(a_n^2+b_n^2)2a02+n=1∑∞(an2+bn2)绝对收敛,并且成立不等式:2a02+∑n=1∞(an2+bn2)≤1π∫−ππf2(x)dx
2a_0^2+\sum_{n=1}^\infty(a_n^2+b_n^2) \le \frac{1}{\pi}\int_{-\pi}^\pi f^2(x)dx
2a02+n=1∑∞(an2+bn2)≤π1∫−ππf2(x)dx
接下来的问题是:这个不等式能否划上等号呢?答案是,我们先放宽条件来考察这个问题。如果f(x)f(x)f(x)是以2π2\pi2π为周期的连续函数,则存在三角多项式T(x)T(x)T(x),使得对任意的ε>0\varepsilon>0ε>0,对任意的xxx,都有∣f(x)−T(x)∣<ε2
\left| f(x) - T(x) \right|<\sqrt{\frac{\varepsilon}{2}}
∣f(x)−T(x)∣<2ε从而1π∫−ππ[f(x)−T(x)]2dx<ε
\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-T(x)]^2dx<\varepsilon
π1∫−ππ[f(x)−T(x)]2dx<ε假设T(x)T(x)T(x)是n0n_0n0次三角多项式,则1π∫−ππ[f(x)−Sn0(x)]2dx≤1π∫−ππ[f(x)−T(x)]2dx<ε
\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-S_{n_0}(x)]^2dx \le \frac{1}{\pi}\int_{-\pi}^\pi[f(x)-T(x)]^2dx<\varepsilon
π1∫−ππ[f(x)−Sn0(x)]2dx≤π1∫−ππ[f(x)−T(x)]2dx<ε当n≥n0n\ge n_0n≥n0时,都有1π∫−ππ[f(x)−Sn(x)]2dx≤1π∫−ππ[f(x)−Sn0(x)]2dx<ε
\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-S_{n}(x)]^2dx \le \frac{1}{\pi}\int_{-\pi}^\pi[f(x)-S_{n_0}(x)]^2dx <\varepsilon
π1∫−ππ[f(x)−Sn(x)]2dx≤π1∫−ππ[f(x)−Sn0(x)]2dx<ε从而limn→∞1π∫−ππ[f(x)−Sn(x)]2dx=0
\lim_{n\to\infty}\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-S_{n}(x)]^2dx=0
n→∞limπ1∫−ππ[f(x)−Sn(x)]2dx=0从而不等式可以改成等式,假设f(x)f(x)f(x)以2π2\pi2π为周期,并且在[−π,π][-\pi,\pi][−π,π]上可积,我们想先用一个连续函数逼近可积函数,最容易想到的连续函数是分段线性函数,由于f(x)f(x)f(x)在[−π,π][-\pi,\pi][−π,π]上可积,对任意的ε>0\varepsilon>0ε>0,由于f(x)f(x)f(x)有界,设∣f(x)∣≤M|f(x)|\le M∣f(x)∣≤M,取[−π,π][-\pi,\pi][−π,π]的一个分划Δ:−π=x0<x1<⋯<xn=π\Delta:-\pi=x_0<x_1<\cdots<x_n=\piΔ:−π=x0<x1<⋯<xn=π,其中ωk\omega_kωk为f(x)f(x)f(x)在[xk−1,xk][x_{k-1},x_k][xk−1,xk]上的振幅(k=1,⋯ ,n)(k=1,\cdots,n)(k=1,⋯,n),要求该分划满足∑k=1nωkΔxk<πε22M
\sum_{k=1}^n\omega_k\Delta x_k <\frac{\pi \varepsilon^2}{2M}
k=1∑nωkΔxk<2Mπε2连接(xk−1,f(xk−1))(x_{k-1},f(x_{k-1}))(xk−1,f(xk−1))和(xk,f(xk))(x_k,f(x_k))(xk,f(xk))再进行周期延拓,得到分段线性并以2π2\pi2π为周期的连续函数g(x)g(x)g(x),当x∈[xk−1,xk]x\in [x_{k-1},x_{k}]x∈[xk−1,xk]时,存在λ∈[0,1]\lambda\in[0,1]λ∈[0,1],使得g(x)=λf(xk−1)+(1−λ)f(xk)
g(x)=\lambda f(x_{k-1}) + (1-\lambda)f(x_k)
g(x)=λf(xk−1)+(1−λ)f(xk)从而∣g(x)−f(x)∣≤λ∣f(xk−1)−f(x)∣+(1−λ)∣f(xk−1)−f(x)∣≤ωk
\left|g(x)-f(x)\right|\le \lambda \left|f(x_{k-1})-f(x)\right|+(1-\lambda)\left|f(x_{k-1})-f(x)\right|\le\omega_k
∣g(x)−f(x)∣≤λ∣f(xk−1)−f(x)∣+(1−λ)∣f(xk−1)−f(x)∣≤ωk同理,设∣f(x)∣≤M|f(x)|\le M∣f(x)∣≤M,则∣g(x)∣≤M|g(x)|\le M∣g(x)∣≤M,则∣g(x)−f(x)∣≤2M|g(x)-f(x)|\le 2M∣g(x)−f(x)∣≤2M,于是1π∫−ππ[f(x)−g(x)]2dx≤2Mπ∫−ππ∣f(x)−g(x)∣dx=2Mπ∑k=1n∫xk−1xk∣f(x)−g(x)∣dx≤2Mπ∑k=1nωkΔxk<ε
\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-g(x)]^2dx\le\frac{2M}{\pi}\int_{-\pi}^\pi|f(x)-g(x)|dx
\\=\frac{2M}{\pi}\sum_{k=1}^n\int_{x_{k-1}}^{x_k}|f(x)-g(x)|dx
\le\frac{2M}{\pi}\sum_{k=1}^n\omega_k\Delta x_k<\varepsilon
π1∫−ππ[f(x)−g(x)]2dx≤π2M∫−ππ∣f(x)−g(x)∣dx=π2Mk=1∑n∫xk−1xk∣f(x)−g(x)∣dx≤π2Mk=1∑nωkΔxk<ε存在三角多项式T(x)T(x)T(x),满足1π∫−ππ[g(x)−T(x)]2dx<ε
\frac{1}{\pi}\int_{-\pi}^\pi[g(x)-T(x)]^2dx<\varepsilon
π1∫−ππ[g(x)−T(x)]2dx<ε有1π∫−ππ[f(x)−T(x)]2dx≤2π∫−ππ[f(x)−g(x)]2dx+2π∫−ππ[g(x)−T(x)]2dx<4ε
\frac{1}{\pi} \int_{-\pi}^\pi[f(x)-T(x)]^2dx \le
\frac{2}{\pi} \int_{-\pi}^\pi[f(x)-g(x)]^2dx\\+
\frac{2}{\pi} \int_{-\pi}^\pi[g(x)-T(x)]^2dx <4\varepsilon
π1∫−ππ[f(x)−T(x)]2dx≤π2∫−ππ[f(x)−g(x)]2dx+π2∫−ππ[g(x)−T(x)]2dx<4ε用类似的方法可以证明,贝塞尔不等式也可以取等号,若f(x)f(x)f(x)有有限个瑕点,绝对可积且平方可积时,假设f(x)f(x)f(x)唯一的瑕点是x∈(−π,π)x\in(-\pi,\pi)x∈(−π,π),∀ε>0\forall \varepsilon>0∀ε>0,存在δ>0\delta>0δ>0,使得∫c−δc+δf2(x)dx<ε4
\int_{c-\delta}^{c+\delta}f^2(x)dx<\frac{\varepsilon}{4}
∫c−δc+δf2(x)dx<4ε这里设c+δ<π,c−δ>−πc+\delta<\pi,c-\delta>-\pic+δ<π,c−δ>−π,构造以2π2\pi2π为周期的函数f‾(x)={0c−δ<x<c+δf(x)−π≤x≤c−δ或c+δ≤x≤π
\overline{f}(x)=\begin{cases}
0&c-\delta<x<c+\delta\\
f(x)&-\pi\le x\le c-\delta 或 c+\delta\le x\le\pi
\end{cases}
f(x)={0f(x)c−δ<x<c+δ−π≤x≤c−δ或c+δ≤x≤πf‾(x)\overline{f}(x)f(x)在[−π,π][-\pi,\pi][−π,π]上可积,存在三角多项式T(x)T(x)T(x),满足1π∫−ππ[f‾(x)−T(x)]2dx<ε4
\frac{1}{\pi}\int_{-\pi}^\pi[\overline{f}(x)-T(x)]^2dx<\frac{\varepsilon}{4}
π1∫−ππ[f(x)−T(x)]2dx<4ε于是1π∫−ππ[f(x)−T(x)]2dx≤2π∫−ππ[f(x)−f‾(x)]2dx+2π∫−ππ[T(x)−f‾(x)]2dx<ε
\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-T(x)]^2dx \le \frac{2}{\pi}\int_{-\pi}^\pi[f(x)-\overline{f}(x)]^2dx\\+\frac{2}{\pi}\int_{-\pi}^\pi[T(x)-\overline{f}(x)]^2dx<\varepsilon
π1∫−ππ[f(x)−T(x)]2dx≤π2∫−ππ[f(x)−f(x)]2dx+π2∫−ππ[T(x)−f(x)]2dx<ε类似地,就容易得到
定理12.8(帕萨瓦尔等式) f(x)f(x)f(x)是以2π2\pi2π为周期的函数,若f(x)f(x)f(x)在[−π,π][-\pi,\pi][−π,π]上可积或绝对可积且平方可积f(x)∼a0+∑n=1∞(ancos(nx)+bnsin(nx)) f(x)\sim a_0+\sum_{n=1}^\infty(a_n\cos(nx)+b_n\sin(nx)) f(x)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))则成立帕萨瓦尔等式2a02+∑n=1∞(an2+bn2)=1π∫−ππf2(x)dx 2a_0^2+\sum_{n=1}^\infty(a_n^2+b_n^2)=\frac{1}{\pi}\int_{-\pi}^\pi f^2(x)dx 2a02+n=1∑∞(an2+bn2)=π1∫−ππf2(x)dx
这等价于limn→∞∫−ππ[f(x)−Sn(x)]2dx=0\displaystyle \lim_{n\to\infty} \int_{-\pi}^\pi[f(x)-S_n(x)]^2dx=0n→∞lim∫−ππ[f(x)−Sn(x)]2dx=0,称为Sn(x)S_n(x)Sn(x)平方收敛到f(x)f(x)f(x)。