函数的傅里叶级数
周期为 2 π 2\pi 2π的函数的傅里叶级数
从纯数学的观点看,幂级数是对函数系
1
,
x
,
x
2
,
x
3
,
⋯
1,x,x^2,x^3,\cdots
1,x,x2,x3,⋯的线性组合,实际上,多项式是以上函数系的有限线性组合,幂级数是对以上函数系的可数线性组合。从这个观点看,更换一组函数系,就可以得到另一种级数,初等函数中具有周期性的典型的函数是三角函数,因此,自然想到采用三角函数系来构成新的级数形式
1
,
sin
(
x
)
,
cos
(
x
)
,
sin
(
2
x
)
,
cos
(
2
x
)
,
sin
(
3
x
)
,
cos
(
3
x
)
,
⋯
1,\sin(x),\cos(x),\sin(2x),\cos(2x),\sin(3x),\cos(3x),\cdots
1,sin(x),cos(x),sin(2x),cos(2x),sin(3x),cos(3x),⋯我们称级数
f
(
x
)
=
a
0
+
∑
n
=
1
∞
(
a
n
cos
(
n
x
)
+
b
n
sin
(
n
x
)
)
f(x)=a_0+\sum_{n=1}^{\infty}(a_n\cos(nx)+b_n\sin(nx))
f(x)=a0+n=1∑∞(ancos(nx)+bnsin(nx))为傅里叶级数。显然,如果
f
(
x
)
f(x)
f(x)可以展开成以上三角级数的形式,那么,
f
(
x
)
f(x)
f(x)应当是以
2
π
2\pi
2π为周期的。反过来,我们要问:如果函数
f
(
x
)
f(x)
f(x)是以
2
π
2\pi
2π为周期的函数,满足何种条件下它能展开成三角级数的形式?如果能展开,各项系数应当如何确定呢?
我们首先假设
f
(
x
)
能
展
开
成
三
角
级
数
的
形
式
‾
\underline{f(x)能展开成三角级数的形式}
f(x)能展开成三角级数的形式,并且假设可以进行
逐
项
积
分
‾
\underline{逐项积分}
逐项积分。那么我们可以通过逐项积分的形式求出各项系数。为什么呢?因为三角函数系具有
正
交
性
‾
\underline{正交性}
正交性,是
正
交
函
数
系
‾
\underline{正交函数系}
正交函数系。我们在解析几何和高等代数中接触了内积空间的概念,所谓内积,即满足
对
称
、
正
定
的
双
线
性
函
数
‾
\underline{对称、正定的双线性函数}
对称、正定的双线性函数。对于
[
a
,
b
]
[a,b]
[a,b]上的可积函数
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x),定义内积为
<
f
,
g
>
=
∫
a
b
f
(
x
)
g
(
x
)
d
x
\displaystyle <f,g>=\int_a^b{f(x)g(x)dx}
<f,g>=∫abf(x)g(x)dx,从解析几何的观点看,如果两个向量垂直或称正交,那么,两个向量的内积为0,在抽象的函数空间这里,我们也引入“正交”的概念,下面我们验证三角函数系在
[
−
π
,
+
π
]
[-\pi,+\pi]
[−π,+π]上是正交函数系。
∫
−
π
π
s
i
n
(
n
x
)
d
x
=
[
−
1
n
c
o
s
(
n
x
)
]
−
π
π
=
0
,
n
=
1
,
2
,
⋯
\int_{-\pi}^{\pi}{sin(nx)dx}=[-\frac{1}{n}cos(nx)]_{-\pi}^\pi=0,n=1,2,\cdots
∫−ππsin(nx)dx=[−n1cos(nx)]−ππ=0,n=1,2,⋯
∫
−
π
π
c
o
s
(
n
x
)
d
x
=
[
1
n
s
i
n
(
n
x
)
]
−
π
π
=
0
,
n
=
1
,
2
,
⋯
\int_{-\pi}^\pi{cos(nx)dx}=[\frac{1}{n}sin(nx)]_{-\pi}^\pi=0,n=1,2,\cdots
∫−ππcos(nx)dx=[n1sin(nx)]−ππ=0,n=1,2,⋯
∫
−
π
π
cos
(
i
x
)
cos
(
j
x
)
d
x
=
1
2
(
∫
−
π
π
c
o
s
(
(
i
+
j
)
x
)
d
x
+
∫
−
π
π
c
o
s
(
(
i
−
j
)
x
)
d
x
)
=
0
i
≠
j
,
i
,
j
=
1
,
2
,
⋯
\begin{aligned} \int_{-\pi}^\pi{\cos(ix)\cos(jx)dx}=\frac{1}{2}(\int_{-\pi}^\pi{cos((i+j)x)dx}+\int_{-\pi}^\pi{cos((i-j)x)dx})=0\\i\neq j,i,j=1,2,\cdots \end{aligned}
∫−ππcos(ix)cos(jx)dx=21(∫−ππcos((i+j)x)dx+∫−ππcos((i−j)x)dx)=0i=j,i,j=1,2,⋯
∫
−
π
π
sin
(
i
x
)
sin
(
j
x
)
d
x
=
1
2
(
∫
−
π
π
c
o
s
(
(
i
−
j
)
x
)
d
x
−
∫
−
π
π
c
o
s
(
(
i
+
j
)
x
)
d
x
)
=
0
i
≠
j
,
i
,
j
=
1
,
2
,
⋯
\begin{aligned} \int_{-\pi}^\pi{\sin(ix)\sin(jx)dx}=\frac{1}{2}(\int_{-\pi}^\pi{cos((i-j)x)dx}-\int_{-\pi}^\pi{cos((i+j)x)dx})=0\\i\neq j,i,j=1,2,\cdots \end{aligned}
∫−ππsin(ix)sin(jx)dx=21(∫−ππcos((i−j)x)dx−∫−ππcos((i+j)x)dx)=0i=j,i,j=1,2,⋯
∫
−
π
π
sin
(
i
x
)
cos
(
j
x
)
d
x
=
1
2
(
∫
−
π
π
s
i
n
(
(
i
−
j
)
x
)
d
x
+
∫
−
π
π
s
i
n
(
(
i
+
j
)
x
)
d
x
)
=
0
i
,
j
=
1
,
2
,
⋯
\begin{aligned} \int_{-\pi}^\pi{\sin(ix)\cos(jx)dx}=\frac{1}{2}(\int_{-\pi}^\pi{sin((i-j)x)dx}+\int_{-\pi}^\pi{sin((i+j)x)dx})=0\\i,j=1,2,\cdots \end{aligned}
∫−ππsin(ix)cos(jx)dx=21(∫−ππsin((i−j)x)dx+∫−ππsin((i+j)x)dx)=0i,j=1,2,⋯由正交性,要求
sin
(
n
x
)
,
cos
(
n
x
)
,
1
\sin(nx),\cos(nx),1
sin(nx),cos(nx),1对应的系数,只需要乘以相应的三角函数,再进行逐项积分即可。由于
∫
−
π
π
d
x
=
2
π
\int_{-\pi}^\pi{dx}=2\pi
∫−ππdx=2π
∫
−
π
π
cos
2
(
n
x
)
d
x
=
∫
−
π
π
1
+
cos
(
2
n
x
)
2
d
x
=
π
\int_{-\pi}^\pi{\cos^2(nx)dx}=\int_{-\pi}^\pi{\frac{1+\cos(2nx)}{2}dx}=\pi
∫−ππcos2(nx)dx=∫−ππ21+cos(2nx)dx=π
∫
−
π
π
sin
2
(
n
x
)
d
x
=
∫
−
π
π
1
−
cos
(
2
n
x
)
2
d
x
=
π
\int_{-\pi}^\pi{\sin^2(nx)dx}=\int_{-\pi}^\pi{\frac{1-\cos(2nx)}{2}dx}=\pi
∫−ππsin2(nx)dx=∫−ππ21−cos(2nx)dx=π两边乘以
1
1
1,再进行逐项积分,得到
∫
−
π
π
f
(
x
)
d
x
=
2
π
a
0
\int_{-\pi}^\pi{f(x)dx}=2\pi a_0
∫−ππf(x)dx=2πa0两边乘以
cos
(
n
x
)
\cos(nx)
cos(nx),再进行逐项积分,得到
∫
−
π
π
f
(
x
)
cos
(
n
x
)
d
x
=
a
n
π
,
n
=
1
,
2
,
⋯
\int_{-\pi}^\pi{f(x)\cos{(nx)}dx}=a_n\pi,n=1,2,\cdots
∫−ππf(x)cos(nx)dx=anπ,n=1,2,⋯两边乘以
sin
(
n
x
)
\sin(nx)
sin(nx),再进行逐项积分,得到
∫
−
π
π
f
(
x
)
sin
(
n
x
)
d
x
=
b
n
π
,
n
=
1
,
2
,
⋯
\int_{-\pi}^\pi{f(x)\sin{(nx)}dx}=b_n\pi,n=1,2,\cdots
∫−ππf(x)sin(nx)dx=bnπ,n=1,2,⋯于是,我们就求解出所有系数。总结起来就是
{
a
0
=
1
2
π
∫
−
π
π
f
(
x
)
d
x
a
n
=
1
π
∫
−
π
π
f
(
x
)
cos
(
n
x
)
d
x
n
=
1
,
2
,
⋯
b
n
=
1
π
∫
−
π
π
f
(
x
)
sin
(
n
x
)
d
x
n
=
1
,
2
,
⋯
\begin{cases} a_0=\frac{1}{2\pi}\int_{-\pi}^\pi{f(x)dx}\\ a_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(x)\cos{(nx)}dx}&n=1,2,\cdots\\ b_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(x)\sin{(nx)}dx}&n=1,2,\cdots \end{cases}
⎩⎪⎨⎪⎧a0=2π1∫−ππf(x)dxan=π1∫−ππf(x)cos(nx)dxbn=π1∫−ππf(x)sin(nx)dxn=1,2,⋯n=1,2,⋯这组系数称为傅里叶系数,实际上,如果
f
(
x
)
f(x)
f(x)在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]上可积,也可以求出这么一组系数,但
f
(
x
)
f(x)
f(x)是否等于其傅里叶级数呢?答案是否定的。因为,如果仅仅改变
f
(
x
)
f(x)
f(x)在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]内的有限个点,傅里叶级数也是不变的,所以,我们只能称
f
(
x
)
f(x)
f(x)对应于其傅里叶级数,而不能简单的划等号。我们记
f
(
x
)
a
0
+
∑
n
=
1
∞
a
n
cos
(
n
x
)
+
b
n
sin
(
n
x
)
f(x)~a_0+\sum_{n=1}^\infty{a_n\cos(nx)+b_n\sin(nx)}
f(x) a0+n=1∑∞ancos(nx)+bnsin(nx)波浪号就表示对应,而不是采用等号,右边称为
f
(
x
)
f(x)
f(x)的傅里叶级数。对于求傅里叶级数,我们给出一个命题,以方便我们选择最合适的区间来进行积分。
定理12.1 f ( x ) f(x) f(x)是 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞)上的以 2 T 2T 2T为周期的函数, f ( x ) f(x) f(x)在任意有界闭区间上可积,则 ∀ δ ∈ R \forall \delta \in R ∀δ∈R,有 ∫ − T T f ( x ) d x = ∫ − T + δ T + δ f ( x ) d x \int_{-T}^T{f(x)dx}=\int_{-T+\delta}^{T+\delta}{f(x)}dx ∫−TTf(x)dx=∫−T+δT+δf(x)dx
证:
不失一般性,设 δ > 0 \delta>0 δ>0,我们证明: ∫ − T − T + δ f ( x ) d x = ∫ T T + δ f ( x ) d x \displaystyle \int_{-T}^{-T+\delta}{f(x)dx}=\int_{T}^{T+\delta}{f(x)dx} ∫−T−T+δf(x)dx=∫TT+δf(x)dx,令分划 Δ n : T = x 0 ( n ) < x 1 ( n ) = T + δ n < ⋯ < x n − 1 ( n ) = T + ( n − 1 ) δ n < x n ( n ) = T + δ \Delta_n:T=x_0^{(n)}<x_1^{(n)}=T+\frac{\delta}{n}<\cdots<x_{n-1}^{(n)}=T+\frac{(n-1)\delta}{n}<x_n^{(n)}=T+\delta Δn:T=x0(n)<x1(n)=T+nδ<⋯<xn−1(n)=T+n(n−1)δ<xn(n)=T+δ,构造黎曼和 S n ( x ) = δ n ∑ k = 1 n f ( T + k δ n ) S_n(x)=\frac{\delta}{n}\sum_{k=1}^nf(T+\frac{k\delta}{n}) Sn(x)=nδk=1∑nf(T+nkδ)由周期性 S n ( x ) = δ n ∑ k = 1 n f ( − T + k δ n ) S_n(x)=\frac{\delta}{n}\sum_{k=1}^nf(-T+\frac{k\delta}{n}) Sn(x)=nδk=1∑nf(−T+nkδ)由定积分的定义, lim n → ∞ S n = ∫ T T + δ f ( x ) d x \displaystyle \lim_{n\to\infty}S_n=\int_T^{T+\delta}{f(x)dx} n→∞limSn=∫TT+δf(x)dx,若按照后一式子的写法,也可看做在分划 Δ n : − T = x 0 ( n ) < x 1 ( n ) = − T + δ n < ⋯ < x n − 1 ( n ) = − T + ( n − 1 ) δ n < x n ( n ) = − T + δ \Delta_n:-T=x_0^{(n)}<x_1^{(n)}=-T+\frac{\delta}{n}<\cdots<x_{n-1}^{(n)}=-T+\frac{(n-1)\delta}{n}<x_n^{(n)}=-T+\delta Δn:−T=x0(n)<x1(n)=−T+nδ<⋯<xn−1(n)=−T+n(n−1)δ<xn(n)=−T+δ上的一个黎曼和,因此,由定积分的定义,有 lim n → ∞ S n = ∫ − T − T + δ f ( x ) d x \displaystyle\lim_{n\to\infty}S_n=\int_{-T}^{-T+\delta}f(x)dx n→∞limSn=∫−T−T+δf(x)dx,这就证得了 ∫ − T − T + δ f ( x ) d x = ∫ T T + δ f ( x ) d x \displaystyle \int_{-T}^{-T+\delta}{f(x)dx}=\int_{T}^{T+\delta}{f(x)dx} ∫−T−T+δf(x)dx=∫TT+δf(x)dx,于是: ∫ − T T f ( x ) d x = ∫ − T − T + δ f ( x ) d x + ∫ − T + δ T + δ f ( x ) d x + ∫ T + δ T f ( x ) d x = ∫ − T − T + δ f ( x ) d x + ∫ − T + δ T + δ f ( x ) d x − ∫ T T + δ f ( x ) d x = ∫ − T + δ T + δ f ( x ) d x \begin{aligned} \int_{-T}^{T}{f(x)dx}=\int_{-T}^{-T+\delta}{f(x)dx}+\int_{-T+\delta}^{T+\delta}{f(x)dx}+\int_{T+\delta}^T{f(x)dx}=\\ \int_{-T}^{-T+\delta}{f(x)dx}+\int_{-T+\delta}^{T+\delta}{f(x)dx}-\int_T^{T+\delta}{f(x)dx}=\int_{-T+\delta}^{T+\delta}{f(x)dx} \end{aligned} ∫−TTf(x)dx=∫−T−T+δf(x)dx+∫−T+δT+δf(x)dx+∫T+δTf(x)dx=∫−T−T+δf(x)dx+∫−T+δT+δf(x)dx−∫TT+δf(x)dx=∫−T+δT+δf(x)dx
也就是说,实际上,我们任意选一个长度为
2
π
2\pi
2π的区间进行积分,都是可以求出傅里叶级数的。对于
[
−
π
,
π
)
[-\pi,\pi)
[−π,π)或
[
0
,
2
π
)
[0,2\pi)
[0,2π)上的可积函数,我们可以通过
延
拓
‾
\underline{延拓}
延拓的方式将其延拓为周期为
2
π
2\pi
2π的周期函数,同样可以求解傅里叶级数。下面给出若干求解傅里叶级数的例子。来展示求傅里叶级数的一般步骤。
例12.1 求
f
(
x
)
=
π
−
x
,
x
∈
[
−
π
,
π
)
f(x)=\pi-x,x\in[-\pi,\pi)
f(x)=π−x,x∈[−π,π)的傅里叶级数
解:
首先,进行延拓,延拓为周期为 2 π 2\pi 2π的周期函数。
再求傅里叶系数: ∫ − π π ( π − x ) d x = π x − x 2 2 ∣ − π π = 2 π , a 0 = π \int_{-\pi}^\pi{(\pi-x)dx}=\pi x-\frac{x^2}{2}|_{-\pi}^\pi=2\pi,a_0=\pi ∫−ππ(π−x)dx=πx−2x2∣−ππ=2π,a0=π ∫ − π π ( π − x ) c o s ( n x ) d x = 0 , a n = 0 , n = 1 , 2 , ⋯ \int_{-\pi}^\pi{(\pi-x)cos(nx)dx}=0,a_n=0,n=1,2,\cdots ∫−ππ(π−x)cos(nx)dx=0,an=0,n=1,2,⋯ ∫ − π π ( π − x ) s i n ( n x ) d x = − ∫ − π π x s i n ( n x ) d x = 1 n x cos ( n x ) ∣ − π π − 1 n ∫ − π π cos ( n x ) d x = 2 π ( − 1 ) n n , b n = 2 ( − 1 ) n n , n = 1 , 2 , ⋯ \begin{aligned} \int_{-\pi}^\pi{(\pi-x)sin(nx)dx}=-\int_{-\pi}^\pi{xsin(nx)dx}=\frac{1}{n}x\cos(nx)|_{-\pi}^\pi-\frac{1}{n}\int_{-\pi}^\pi{\cos(nx)dx}\\=\frac{2\pi (-1)^n}{n},b_n=\frac{2(-1)^n}{n},n=1,2,\cdots \end{aligned} ∫−ππ(π−x)sin(nx)dx=−∫−ππxsin(nx)dx=n1xcos(nx)∣−ππ−n1∫−ππcos(nx)dx=n2π(−1)n,bn=n2(−1)n,n=1,2,⋯因此, f ( x ) ∼ π + 2 ∑ n = 1 ∞ ( − 1 ) n n sin ( n x ) \displaystyle f(x) \sim \pi+2\sum_{n=1}^\infty{\frac{(-1)^n}{n}\sin(nx)} f(x)∼π+2n=1∑∞n(−1)nsin(nx)
这是比较实用的一个例子,后面求一些特殊的级数时可以用到。
例12.2 求
f
(
x
)
=
x
2
k
−
1
,
x
∈
[
−
π
,
π
)
f(x)=x^{2k-1},x\in[-\pi,\pi)
f(x)=x2k−1,x∈[−π,π)的傅里叶级数
解:
求傅里叶系数:首先,对 k = 1 , 2 , ⋯ k=1,2,\cdots k=1,2,⋯,由奇偶性,傅里叶级数只有正弦项,设 f k ( x ) = x 2 k − 1 f_k(x)=x^{2k-1} fk(x)=x2k−1对应 sin ( n x ) \sin(nx) sin(nx)项的系数为 b n ( k ) b^{(k)}_n bn(k),则 b n ( k + 1 ) = 1 π ∫ − π π x 2 k + 1 sin ( n x ) d x = − 1 n π x 2 k + 1 cos ( n x ) ∣ − π π + 2 k + 1 n π ∫ − π π x 2 k cos ( n x ) d x = − 2 ( − 1 ) n π 2 k n + 2 k + 1 n π ∫ − π π x 2 k cos ( n x ) d x = − 2 ( − 1 ) n π 2 k n + 2 k + 1 n 2 π x 2 k sin ( n x ) ∣ − π π − 2 k ( 2 k + 1 ) n 2 π ∫ − π π x 2 k − 1 s i n ( n x ) d x = − 2 ( − 1 ) n π 2 k n − 2 k ( 2 k + 1 ) n 2 b n ( k ) \begin{aligned} b^{(k+1)}_n=\frac{1}{\pi}\int_{-\pi}^\pi{x^{2k+1}\sin(nx)dx}\\=-\frac{1}{n\pi}x^{2k+1}\cos(nx)|_{-\pi}^\pi+\frac{2k+1}{n\pi}\int_{-\pi}^\pi{x^{2k}\cos(nx)dx}\\ =-\frac{2^(-1)^n\pi^{2k}}{n}+\frac{2k+1}{n\pi}\int_{-\pi}^\pi{x^{2k}\cos(nx)dx}\\=-\frac{2(-1)^n\pi^{2k}}{n}+\frac{2k+1}{n^2\pi}x^{2k}\sin(nx)|_{-\pi}^\pi-\frac{2k(2k+1)}{n^2\pi}\int_{-\pi}^\pi{x^{2k-1}sin(nx)dx}\\ =-\frac{2(-1)^n\pi^{2k}}{n}-\frac{2k(2k+1)}{n^2}b_n^{(k)} \end{aligned} bn(k+1)=π1∫−ππx2k+1sin(nx)dx=−nπ1x2k+1cos(nx)∣−ππ+nπ2k+1∫−ππx2kcos(nx)dx=−n2(−1)nπ2k+nπ2k+1∫−ππx2kcos(nx)dx=−n2(−1)nπ2k+n2π2k+1x2ksin(nx)∣−ππ−n2π2k(2k+1)∫−ππx2k−1sin(nx)dx=−n2(−1)nπ2k−n22k(2k+1)bn(k)这样我们得到一个递推式 b n ( k + 1 ) = − 2 ( − 1 ) n π 2 k n − 2 k ( 2 k + 1 ) n 2 b n ( k ) b^{(k+1)}_n=-\frac{2(-1)^n\pi^{2k}}{n}-\frac{2k(2k+1)}{n^2}b_n^{(k)} bn(k+1)=−n2(−1)nπ2k−n22k(2k+1)bn(k)这样,我们只要求出 f ( X ) = x f(X)=x f(X)=x的傅里叶级数,就可以顺着递推式得到其他的傅里叶级数而不需要再重复进行积分。而 b n ( 1 ) = 1 π ∫ − π π x sin ( n x ) d x = − 2 ( − 1 ) n n b_n^{(1)}=\frac{1}{\pi}\int_{-\pi}^\pi{x\sin(nx)dx}=-\frac{2(-1)^n}{n} bn(1)=π1∫−ππxsin(nx)dx=−n2(−1)n再由递推式,就可以得到 { b n ( 2 ) = − 2 ( − 1 ) n π 2 n + 12 ( − 1 ) n n 3 b n ( 3 ) = − 2 ( − 1 ) n π 4 n + 40 ( − 1 ) n π 2 n 3 − 240 ( − 1 ) n n 5 \begin{cases} b_n^{(2)}=-\frac{2(-1)^n\pi^2}{n}+\frac{12(-1)^n}{n^3}\\ b_n^{(3)}=-\frac{2(-1)^n\pi^4}{n}+\frac{40(-1)^n\pi^2}{n^3}-\frac{240(-1)^n}{n^5} \end{cases} {bn(2)=−n2(−1)nπ2+n312(−1)nbn(3)=−n2(−1)nπ4+n340(−1)nπ2−n5240(−1)n于是就可以求出所有的傅里叶系数。
例12.3 求 f ( x ) = x 2 k , x ∈ [ − π , π ] f(x)=x^{2k},x\in[-\pi,\pi] f(x)=x2k,x∈[−π,π]的傅里叶系数
解:
类似于上例的做法,所有的 sin \sin sin项的系数均为0,而 a 0 ( k ) = 1 2 π ∫ − π π x 2 k d x = π 2 k 2 ( 2 k + 1 ) a_0^{(k)}=\frac{1}{2\pi}\int_{-\pi}^\pi{x^{2k}dx}=\frac{\pi^{2k}}{2(2k+1)} a0(k)=2π1∫−ππx2kdx=2(2k+1)π2k a n ( k + 1 ) = 4 ( k + 1 ) ( − 1 ) n π 2 k − 2 n 2 − 2 ( k + 1 ) ( 2 k + 1 ) n 2 a n ( k ) a_n^{(k+1)}=\frac{4(k+1)(-1)^n\pi^{2k-2}}{n^2}-\frac{2(k+1)(2k+1)}{n^2}a^{(k)}_n an(k+1)=n24(k+1)(−1)nπ2k−2−n22(k+1)(2k+1)an(k) a n ( 1 ) = − 4 ( − 1 ) n n 2 a_n^{(1)}=-\frac{4(-1)^n}{n^2} an(1)=−n24(−1)n其他项依此类推
任意区间上的函数的傅里叶级数
现在我们来考虑周期为
2
T
2T
2T的函数
f
(
x
)
f(x)
f(x),实际上,只需要一个简单的变换
g
(
x
)
=
f
(
T
π
x
)
g(x)=f(\frac{T}{\pi}x)
g(x)=f(πTx),即可得到周期为
2
π
2\pi
2π的函数
g
(
x
)
g(x)
g(x),其傅里叶级数为
a
0
=
1
2
π
∫
−
π
π
f
(
T
π
x
)
d
x
=
1
2
T
∫
−
T
T
f
(
x
)
d
x
a_0=\frac{1}{2\pi}\int_{-\pi}^\pi{f(\frac{T}{\pi}x)dx}=\frac{1}{2T}\int_{-T}^T{f(x)dx}
a0=2π1∫−ππf(πTx)dx=2T1∫−TTf(x)dx
a
n
=
1
π
∫
−
π
π
f
(
T
π
)
cos
(
n
x
)
d
x
=
1
T
∫
−
T
T
f
(
x
)
cos
(
n
π
x
T
)
d
x
a_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(\frac{T}{\pi})\cos(nx)dx}=\frac{1}{T}\int_{-T}^T{f(x)\cos(\frac{n\pi x}{T})dx}
an=π1∫−ππf(πT)cos(nx)dx=T1∫−TTf(x)cos(Tnπx)dx
b
n
=
1
π
∫
−
π
π
f
(
T
π
)
sin
(
n
x
)
d
x
=
1
T
∫
−
T
T
f
(
x
)
sin
(
n
π
x
T
)
d
x
b_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(\frac{T}{\pi})\sin(nx)dx}=\frac{1}{T}\int_{-T}^T{f(x)\sin(\frac{n\pi x}{T})dx}
bn=π1∫−ππf(πT)sin(nx)dx=T1∫−TTf(x)sin(Tnπx)dx得到
f
(
T
π
x
)
∼
a
0
+
∑
n
=
1
∞
(
a
n
cos
(
n
x
)
+
b
n
sin
(
n
x
)
)
f(\frac{T}{\pi}x)\sim a_0+\sum_{n=1}^\infty{(a_n\cos(nx)+b_n\sin(nx))}
f(πTx)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))再作变量替换
u
=
T
x
π
u=\frac{Tx}{\pi}
u=πTx,得到
f
(
u
)
∼
a
0
+
∑
n
=
1
∞
(
a
n
cos
(
n
π
u
T
)
+
b
n
sin
(
n
π
u
T
)
)
f(u)\sim a_0+\sum_{n=1}^\infty{(a_n\cos(\frac{n\pi u}{T})+b_n\sin(\frac{n\pi u}{T}))}
f(u)∼a0+n=1∑∞(ancos(Tnπu)+bnsin(Tnπu))看到这种形式,不难看出,实际上,这就是换了另一组函数系
1
,
sin
(
π
x
T
)
,
cos
(
π
x
T
)
,
sin
(
2
π
x
T
)
,
cos
(
2
π
x
T
)
,
⋯
1,\sin(\frac{\pi x}{T}),\cos(\frac{\pi x}{T}),\sin(\frac{2\pi x}{T}),\cos(\frac{2\pi x}{T}),\cdots
1,sin(Tπx),cos(Tπx),sin(T2πx),cos(T2πx),⋯再重复上一节的理论就可以得到任意周期的周期函数的傅里叶级数,形式和上面是相同的。若
f
(
x
)
f(x)
f(x)是区间
[
a
,
b
)
[a,b)
[a,b)上的 函数,做平移变换
g
(
x
)
=
f
(
x
−
a
)
g(x)=f(x-a)
g(x)=f(x−a),将其变换为
[
0
,
T
)
[0,T)
[0,T)上的函数,其中
T
=
b
−
a
T=b-a
T=b−a。接下来,我们有两种延拓方式,将其延拓为
[
−
T
,
T
)
[-T,T)
[−T,T)上的函数,一种是奇延拓(正弦级数),一种是偶延拓(余弦级数),顾名思义,即是延拓为奇函数还是延拓为偶函数的区别。延拓之后,再延拓为周期为
2
T
2T
2T的函数,再求解其傅里叶级数即可,这是一般函数的延拓方式。下面举几个例子说明延拓的过程。
例12.4 求下列周期为
2
π
2\pi
2π的函数的正弦级数和余弦级数:
f
(
x
)
=
sin
x
,
0
≤
x
≤
π
f(x)=\sin{x},0\le x\le \pi
f(x)=sinx,0≤x≤π;
解:
首先进行奇延拓得到正弦级数,实际上,奇延拓之后 f ( x ) = sin x , x ∈ [ − π , π ] f(x)=\sin{x},x\in[-\pi,\pi] f(x)=sinx,x∈[−π,π],其傅里叶级数即为 f ( x ) ∼ sin x f(x)\sim \sin{x} f(x)∼sinx。
再进行偶延拓得到余弦级数,当 x ∈ [ − π , 0 ) x\in[-\pi,0) x∈[−π,0)时, f ( x ) = f ( − x ) = − sin x f(x)=f(-x)=-\sin{x} f(x)=f(−x)=−sinx,则 b n = 0 , n = 1 , 2 , ⋯ b_n=0,n=1,2,\cdots bn=0,n=1,2,⋯,则 a 0 = 1 π ∫ 0 π sin x d x = − 1 π cos x ∣ 0 π = 2 π a_0=\frac{1}{\pi}\int_{0}^\pi{\sin{x}dx}=-\frac{1}{\pi}\cos{x}|_0^\pi=\frac{2}{\pi} a0=π1∫0πsinxdx=−π1cosx∣0π=π2 a n = 2 π ∫ 0 π sin x cos n x d x = ( − 1 ) n + 1 π ( n + 1 ) − 1 π ∫ 0 π sin ( n − 1 ) x d x a_n=\frac{2}{\pi}\int_0^\pi{\sin{x}\cos{nx}dx}= \frac{(-1)^n+1}{\pi(n+1)}-\frac{1}{\pi}\int_0^\pi{\sin(n-1)xdx} an=π2∫0πsinxcosnxdx=π(n+1)(−1)n+1−π1∫0πsin(n−1)xdx由上式, n n n为奇数时, a n = 0 a_n=0 an=0, n = 2 k n=2k n=2k时, a n = − 4 π ( 2 k − 1 ) ( 2 k + 1 ) a_n=-\frac{4}{\pi(2k-1)(2k+1)} an=−π(2k−1)(2k+1)4。从而 f ( x ) ∼ 2 π − 4 π ∑ n = 1 ∞ cos ( 2 n x ) 4 n 2 − 1 f(x)\sim \frac{2}{\pi}-\frac{4}{\pi}\sum_{n=1}^\infty\frac{\cos{(2nx)}}{4n^2-1} f(x)∼π2−π4n=1∑∞4n2−1cos(2nx)
例12.5 求下列周期为
T
>
0
T>0
T>0的函数的傅里叶级数:
f
(
x
)
=
x
,
0
≤
x
<
T
f(x)=x,0\le x < T
f(x)=x,0≤x<T
解:
需要注意的是,周期的一半是 T 2 \frac{T}{2} 2T,计算傅里叶系数时要谨慎。 a 0 = 1 T ∫ 0 T x d x = T 2 a_0=\frac{1}{T}\int_0^T{xdx}=\frac{T}{2} a0=T1∫0Txdx=2T a n = 2 T ∫ 0 T x cos ( 2 n π x T ) d x = 0 a_n=\frac{2}{T}\int_0^T{x\cos(\frac{2n\pi x}{T})dx}=0 an=T2∫0Txcos(T2nπx)dx=0 b n = 2 T ∫ 0 T x sin ( 2 n π x T ) d x = − T n π b_n=\frac{2}{T}\int_0^T{x\sin(\frac{2n\pi x}{T})dx}=-\frac{T}{n\pi} bn=T2∫0Txsin(T2nπx)dx=−nπT因此 f ( x ) ∼ T 2 − T π ∑ n = 1 ∞ 1 n sin ( 2 n π x T ) f(x)\sim \frac{T}{2}-\frac{T}{\pi}\sum_{n=1}^\infty\frac{1}{n}\sin{(\frac{2n\pi x}{T})} f(x)∼2T−πTn=1∑∞n1sin(T2nπx)
傅里叶级数的逐点收敛
傅里叶级数部分和的表达式
接下来我们要研究的问题是:波浪号能够改为等号。与幂级数相比,傅里叶级数的部分和有其解析表达式:假设 f ( x ) f(x) f(x)以 2 π 2\pi 2π为周期 f ( x ) ∼ a 0 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) f(x)\sim a_0+\sum_{n=1}^\infty{(a_n\cos{nx}+b_n\sin{nx})} f(x)∼a0+n=1∑∞(ancosnx+bnsinnx)其中,部分和为 S n ( x ) = a 0 + ∑ k = 1 n ( a k cos k x + b k sin k x ) = 1 2 π ∫ − π π f ( u ) d u + 1 π ∑ k = 1 n ∫ − π π f ( u ) ( cos k u . cos k x + sin k u . sin k x ) = 1 π ∫ − π π f ( u ) ( 1 2 + ∑ k = 1 n cos k ( u − x ) ) d x \begin{aligned} S_n(x)=a_0+\sum_{k=1}^{n}{(a_k\cos{kx}+b_k\sin{kx})}\\ =\frac{1}{2\pi}\int_{-\pi}^\pi{f(u)du}+\frac{1}{\pi}\sum_{k=1}^n{\int_{-\pi}^\pi{f(u)(\cos{ku}.\cos{kx}+\sin{ku}.\sin{kx})}}\\ =\frac{1}{\pi}\int_{-\pi}^\pi{f(u)(\frac{1}{2}+\sum_{k=1}^n{\cos{k(u-x)}})dx} \end{aligned} Sn(x)=a0+k=1∑n(akcoskx+bksinkx)=2π1∫−ππf(u)du+π1k=1∑n∫−ππf(u)(cosku.coskx+sinku.sinkx)=π1∫−ππf(u)(21+k=1∑ncosk(u−x))dx我们来推导如下的一个公式 ( 1 2 + ∑ k = 1 n cos k x ) sin x 2 = 1 2 sin x 2 + 1 2 ∑ k = 1 n ( sin 1 + 2 k 2 x − sin 2 k − 1 2 x ) = 1 2 sin 2 n + 1 2 x (\frac{1}{2}+\sum_{k=1}^n{\cos{kx}})\sin{\frac{x}{2}}\\ =\frac{1}{2}\sin{\frac{x}{2}}+\frac{1}{2}\sum_{k=1}^n(\sin{\frac{1+2k}{2}x}-\sin{\frac{2k-1}{2}x})\\ =\frac{1}{2}\sin{\frac{2n+1}{2}x} (21+k=1∑ncoskx)sin2x=21sin2x+21k=1∑n(sin21+2kx−sin22k−1x)=21sin22n+1x因此 1 2 + ∑ k = 1 n cos k x = sin 2 n + 1 2 x 2 sin x 2 \frac{1}{2}+\sum_{k=1}^n{\cos{kx}}=\frac{\sin{\frac{2n+1}{2}x}}{2\sin{\frac{x}{2}}} 21+k=1∑ncoskx=2sin2xsin22n+1x因此 S n ( x ) = 1 π ∫ − π π f ( u ) sin 2 n + 1 2 ( u − x ) 2 sin u − x 2 d u S_n(x)=\frac{1}{\pi}\int_{-\pi}^\pi{f(u)\frac{\sin{\frac{2n+1}{2}(u-x)}}{2\sin{\frac{u-x}{2}}}du} Sn(x)=π1∫−ππf(u)2sin2u−xsin22n+1(u−x)du做变换 t = u − x t=u-x t=u−x S n ( x ) = 1 π ∫ − π − x π − x f ( t + x ) sin ( n + 1 2 ) t 2 sin t 2 d x = 1 π ∫ − π π f ( t + x ) sin ( n + 1 2 ) t 2 sin t 2 d x S_n(x)=\frac{1}{\pi}\int_{-\pi-x}^{\pi-x}{f(t+x)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dx}=\frac{1}{\pi}\int_{-\pi}^\pi{f(t+x)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dx} Sn(x)=π1∫−π−xπ−xf(t+x)2sin2tsin(n+21)tdx=π1∫−ππf(t+x)2sin2tsin(n+21)tdx做变换 u = − t u=-t u=−t ∫ − π 0 f ( t + x ) sin ( n + 1 2 ) t 2 sin t 2 d t = ∫ 0 π f ( x − t ) sin ( n + 1 2 ) t 2 sin t 2 d t \int_{-\pi}^0{f(t+x)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt}=\int_0^{\pi}{f(x-t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} ∫−π0f(t+x)2sin2tsin(n+21)tdt=∫0πf(x−t)2sin2tsin(n+21)tdt因此 S n ( x ) = 1 π ∫ 0 π [ f ( x + t ) + f ( x − t ) ] sin ( n + 1 2 ) t 2 sin t 2 d t S_n(x)=\frac{1}{\pi}\int_0^\pi{[f(x+t)+f(x-t)]\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} Sn(x)=π1∫0π[f(x+t)+f(x−t)]2sin2tsin(n+21)tdt现在,我们令 f ( x ) = 1 f(x)=1 f(x)=1,此时 S n ( x ) = 1 S_n(x)=1 Sn(x)=1,这时, 傅 里 叶 级 数 是 可 以 划 等 号 的 ‾ \underline{傅里叶级数是可以划等号的} 傅里叶级数是可以划等号的,此时 1 π ∫ 0 π sin ( n + 1 2 ) t sin t 2 d t = 1 \frac{1}{\pi}\int_0^\pi{\frac{\sin{(n+\frac{1}{2})t}}{\sin\frac{t}{2}}dt}=1 π1∫0πsin2tsin(n+21)tdt=1现在,给定实数 S S S,我们要验证 S n ( x ) − S S_n(x)-S Sn(x)−S是否收敛到0 S n ( x ) − S = 1 π ∫ 0 π [ f ( x + t ) + f ( x − t ) − 2 S ] sin ( n + 1 2 ) t 2 sin t 2 d t S_n(x)-S=\frac{1}{\pi}\int_0^\pi{[f(x+t)+f(x-t)-2S]\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} Sn(x)−S=π1∫0π[f(x+t)+f(x−t)−2S]2sin2tsin(n+21)tdt令 ϕ ( t ) = f ( x + t ) + f ( x − t ) − 2 S \phi(t)=f(x+t)+f(x-t)-2S ϕ(t)=f(x+t)+f(x−t)−2S,此时 S n ( x ) − S = 1 π ∫ 0 π ϕ ( t ) sin ( n + 1 2 ) t 2 sin t 2 d t S_n(x)-S=\frac{1}{\pi}\int_0^\pi{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} Sn(x)−S=π1∫0πϕ(t)2sin2tsin(n+21)tdt
黎曼局部化定理
本节要证明的是一个非常令人诧异的事实:傅里叶级数的收敛性只与
f
(
x
)
f(x)
f(x)在某点的附近的性质有关,这从表面上看是得不出这个结论的。首先,傅里叶系数的表达式为
{
a
0
=
1
2
π
∫
−
π
π
f
(
x
)
d
x
a
n
=
1
π
∫
−
π
π
f
(
x
)
cos
(
n
x
)
d
x
n
=
1
,
2
,
⋯
b
n
=
1
π
∫
−
π
π
f
(
x
)
sin
(
n
x
)
d
x
n
=
1
,
2
,
⋯
\begin{cases} a_0=\frac{1}{2\pi}\int_{-\pi}^\pi{f(x)dx}\\ a_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(x)\cos{(nx)}dx}&n=1,2,\cdots\\ b_n=\frac{1}{\pi}\int_{-\pi}^\pi{f(x)\sin{(nx)}dx}&n=1,2,\cdots \end{cases}
⎩⎪⎨⎪⎧a0=2π1∫−ππf(x)dxan=π1∫−ππf(x)cos(nx)dxbn=π1∫−ππf(x)sin(nx)dxn=1,2,⋯n=1,2,⋯那么很自然,
f
(
x
)
f(x)
f(x)的傅里叶系数与
f
(
x
)
f(x)
f(x)在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]上的整体性质有关,下面要证明的一点是:
f
(
x
)
f(x)
f(x)在某点
x
0
x_0
x0的性质,只与
f
(
x
)
f(x)
f(x)在任意邻域
(
x
0
−
δ
,
x
0
+
δ
)
(x_0-\delta,x_0+\delta)
(x0−δ,x0+δ)上局部性质有关,就是所谓的黎曼局部化。实际上,我们不改变
f
(
x
)
f(x)
f(x)在任意邻域
(
x
0
−
δ
,
x
0
+
δ
)
(x_0-\delta,x_0+\delta)
(x0−δ,x0+δ)上的值,改变其他区域的值,所得傅里叶系数可能大不相同,但是在
x
0
x_0
x0局部,收敛性是一致的,这从表面上看是得不出了这个结论的。下面我们将要证明这个事实。\
我们这里假定
f
(
x
)
f(x)
f(x)在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]上
黎
曼
可
积
‾
\underline{黎曼可积}
黎曼可积,或者虽然有有限个瑕点,但是
∣
f
(
x
)
∣
|f(x)|
∣f(x)∣的瑕积分是收敛的,称为
绝
对
可
积
‾
\underline{绝对可积}
绝对可积。下面我们给出一个重要的定理。
定理12.2(黎曼-勒贝格引理) f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上黎曼可积或绝对可积,则 lim p → + ∞ ∫ a b f ( x ) sin ( p x ) d x = 0 \lim_{p\to+\infty}\int_a^b{f(x)\sin{(px)}dx}=0 p→+∞lim∫abf(x)sin(px)dx=0 lim p → + ∞ ∫ a b f ( x ) cos ( p x ) d x = 0 \lim_{p\to+\infty}\int_a^b{f(x)\cos{(px)}dx}=0 p→+∞lim∫abf(x)cos(px)dx=0
证:
仅证明前一个等式,后一个等式的证明是类似的。我们分两种情况证明:
第一种情况:若 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上黎曼可积,对任意的 ε > 0 \varepsilon>0 ε>0,取一分划 δ : a = x 0 < x 1 < ⋯ < x n = n \delta:a=x_0<x_1<\cdots<x_n=n δ:a=x0<x1<⋯<xn=n,其中 ω k \omega_k ωk为 f ( x ) f(x) f(x)在 [ x k − 1 , x k ] [x_{k-1},x_k] [xk−1,xk]上的振幅, m k m_k mk为 f ( x ) f(x) f(x)在 [ x k − 1 , x k ] [x_{k-1},x_k] [xk−1,xk]上的下确界。要求该分划满足 ∑ k = 1 n ω k Δ x k < ε 2 \sum_{k=1}^n{\omega_k \Delta x_k}<\frac{\varepsilon}{2} k=1∑nωkΔxk<2ε由 ∫ a b f ( x ) sin ( p x ) d x = ∑ k = 1 n ∫ x k − 1 x k ( f ( x ) − m k ) sin ( p x ) d x + ∑ k = 1 n m k ∫ x k − 1 x k sin ( p x ) d x \int_a^b{f(x)\sin{(px)}dx}=\sum_{k=1}^n{\int_{x_{k-1}}^{x_k}{(f(x)-m_k)\sin(px)dx}}+\sum_{k=1}^n{m_k\int_{x_{k-1}}^{x_k}{\sin(px)dx}} ∫abf(x)sin(px)dx=k=1∑n∫xk−1xk(f(x)−mk)sin(px)dx+k=1∑nmk∫xk−1xksin(px)dx由于 ∣ ∫ x k − 1 x k sin ( p x ) d x ∣ = ∣ cos ( p x k − 1 ) − cos ( p x k ) p ∣ ≤ 2 p |\int_{x_{k-1}}^{x_k}{\sin(px)dx}|=|\frac{\cos{(px_{k-1})}-\cos{(px_k)}}{p}|\le \frac{2}{p} ∣∫xk−1xksin(px)dx∣=∣pcos(pxk−1)−cos(pxk)∣≤p2 ∣ ∫ a b f ( x ) sin ( p x ) d x ∣ ≤ ∑ k = 1 n ω k Δ x k + 2 ∑ k = 1 n ∣ m k ∣ p |\int_a^b{f(x)\sin{(px)}dx}|\le \sum_{k=1}^n{\omega_k \Delta x_k} + \frac{2\sum_{k=1}^n{|m_k|}}{p} ∣∫abf(x)sin(px)dx∣≤k=1∑nωkΔxk+p2∑k=1n∣mk∣当 p > 4 ∑ k = 1 n ∣ m k ∣ ε \displaystyle p>\frac{4\sum_{k=1}^n{|m_k|}}{\varepsilon} p>ε4∑k=1n∣mk∣时, ∣ ∫ a b f ( x ) sin ( p x ) d x ∣ < ε \displaystyle|\int_a^b{f(x)\sin{(px)}dx}|<\varepsilon ∣∫abf(x)sin(px)dx∣<ε。
当 f ( x ) f(x) f(x)在 [ a , b ] [a,b] [a,b]上绝对可积时,假设 a a a是 f ( x ) f(x) f(x)的唯一的瑕点,对任意的 ε > 0 \varepsilon>0 ε>0,存在 δ > 0 \delta>0 δ>0,使得 ∫ a a + δ ∣ f ( x ) ∣ < ε 2 \displaystyle \int_{a}^{a+\delta}{|f(x)|}<\frac{\varepsilon}{2} ∫aa+δ∣f(x)∣<2ε,取定 δ \delta δ,存在 M > 0 M>0 M>0, p > M p>M p>M时, ∣ ∫ a + δ b f ( x ) sin ( p x ) d x ∣ < ε 2 |\int_{a+\delta}^b{f(x)\sin{(px)}dx}|<\frac{\varepsilon}{2} ∣∫a+δbf(x)sin(px)dx∣<2ε此时 ∣ ∫ a b f ( x ) sin ( p x ) d x ∣ ≤ ∣ ∫ a a + δ f ( x ) sin ( p x ) d x ∣ + ∣ ∫ a + δ b f ( x ) sin ( p x ) d x ∣ < ∫ a a + δ ∣ f ( x ) ∣ d x + ε 2 < ε \begin{aligned} |\int_a^b{f(x)\sin{(px)}dx}|\le |\int_a^{a+\delta}{f(x)\sin{(px)}dx}|+|\int_{a+\delta}^b{f(x)\sin{(px)}dx}| \\< \int_a^{a+\delta}{{|f(x)|}dx} + \frac{\varepsilon}{2} <\varepsilon \end{aligned} ∣∫abf(x)sin(px)dx∣≤∣∫aa+δf(x)sin(px)dx∣+∣∫a+δbf(x)sin(px)dx∣<∫aa+δ∣f(x)∣dx+2ε<ε有限个瑕点的情况可以通过分割区间证得
前面我们已经求得了 S n ( x ) − S = 1 π ∫ 0 π ϕ ( t ) sin ( n + 1 2 ) t 2 sin t 2 d t S_n(x)-S=\frac{1}{\pi}\int_0^\pi{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} Sn(x)−S=π1∫0πϕ(t)2sin2tsin(n+21)tdt其中 ϕ ( t ) = f ( x + t ) + f ( x − t ) − 2 S \phi(t)=f(x+t)+f(x-t)-2S ϕ(t)=f(x+t)+f(x−t)−2S,对 δ > 0 \delta>0 δ>0,在区间 [ δ , π ] [\delta,\pi] [δ,π]上, 1 2 sin t 2 \frac{1}{2\sin{\frac{t}{2}}} 2sin2t1有界连续。若 f ( x ) f(x) f(x)黎曼可积或绝对可积,此时, ϕ ( t ) \phi(t) ϕ(t)在 [ δ , π ] [\delta,\pi] [δ,π]上也黎曼可积或绝对可积,由黎曼-勒贝格引理 lim n → ∞ 1 π ∫ δ π ϕ ( t ) sin ( n + 1 2 ) t 2 sin t 2 d t = 0 \lim_{n\to\infty}{ \frac{1}{\pi}\int_\delta^\pi{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} }=0 n→∞limπ1∫δπϕ(t)2sin2tsin(n+21)tdt=0从而, S n − S S_n-S Sn−S是否趋于0,取决于 1 π ∫ 0 δ ϕ ( t ) sin ( n + 1 2 ) t 2 sin t 2 d t \displaystyle \frac{1}{\pi}\int_0^\delta{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} π1∫0δϕ(t)2sin2tsin(n+21)tdt是否趋于0,而这只与 f ( t ) f(t) f(t)在 x x x附近的性质有关系。
傅里叶级数收敛性定理的证明
现在我们来讨论傅里叶级数的收敛性问题。我们首先,需要将 2 sin t 2 2\sin{\frac{t}{2}} 2sin2t替换成 t t t,实际上, ∫ 0 δ ϕ ( t ) sin ( n + 1 2 ) t 2 sin t 2 d t − ∫ 0 δ ϕ ( t ) t sin ( n + 1 2 ) t d t = ∫ 0 δ ϕ ( t ) t − 2 sin t 2 2 t sin t 2 sin ( n + 1 2 ) t d t \int_0^\delta{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt}-\int_0^\delta{\frac{\phi(t)}{t}\sin{(n+\frac{1}{2})t}dt} =\int_0^\delta{\phi(t)\frac{t-2\sin{\frac{t}{2}}}{2t\sin{\frac{t}{2}}}\sin{(n+\frac{1}{2})t}dt} ∫0δϕ(t)2sin2tsin(n+21)tdt−∫0δtϕ(t)sin(n+21)tdt=∫0δϕ(t)2tsin2tt−2sin2tsin(n+21)tdt由于 lim t → 0 t − 2 sin t 2 2 t sin t 2 = lim t → 0 t − 2 sin t 2 t 2 = lim t → 0 1 − cos t 2 2 t = 0 \lim_{t\to 0}{\frac{t-2\sin{\frac{t}{2}}}{2t\sin{\frac{t}{2}}}} =\lim_{t\to 0}{\frac{t-2\sin{\frac{t}{2}}}{t^2}} =\lim_{t\to 0}{\frac{1-\cos{\frac{t}{2}}}{2t}} =0 t→0lim2tsin2tt−2sin2t=t→0limt2t−2sin2t=t→0lim2t1−cos2t=0因此,函数 t − 2 sin t 2 2 t sin t 2 \frac{t-2\sin{\frac{t}{2}}}{2t\sin{\frac{t}{2}}} 2tsin2tt−2sin2t在 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞)上都连续, ϕ ( t ) \phi(t) ϕ(t)黎曼可积或绝对可积,由黎曼勒贝格引理 lim n → ∞ ∫ 0 δ ϕ ( t ) t − 2 sin t 2 2 t sin t 2 sin ( n + 1 2 ) t d t = 0 \lim_{n\to\infty}{ \int_0^\delta{\phi(t)\frac{t-2\sin{\frac{t}{2}}}{2t\sin{\frac{t}{2}}}\sin{(n+\frac{1}{2})t}dt} }=0 n→∞lim∫0δϕ(t)2tsin2tt−2sin2tsin(n+21)tdt=0这说明了 ∫ 0 δ ϕ ( t ) sin ( n + 1 2 ) t 2 sin t 2 d t \displaystyle \int_0^\delta{\phi(t)\frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{2}}}dt} ∫0δϕ(t)2sin2tsin(n+21)tdt和 ∫ 0 δ ϕ ( t ) t sin ( n + 1 2 ) t d t \displaystyle \int_0^\delta{\frac{\phi(t)}{t}\sin{(n+\frac{1}{2})t}dt} ∫0δtϕ(t)sin(n+21)tdt同敛散且极限相同。于是,可以很容易的就得到如下结论
定理12.3 (迪尼判别法) 如果 ϕ ( t ) t \frac{\phi(t)}{t} tϕ(t)在 [ 0 , δ ] [0,\delta] [0,δ]上黎曼可积或绝对可积,则 lim n → ∞ S n ( x ) = S \lim_{n\to\infty}{S_n(x)}=S n→∞limSn(x)=S
我们可以借助瑕积分的比较判别法来对傅里叶级数的收敛性进行判定。下一个问题是, S S S该如何选择?实际上,如果 f ( t ) f(t) f(t)在 x x x处连续,令 S = f ( x ) S=f(x) S=f(x),此时 ϕ ( t ) = f ( x − t ) + f ( x + t ) − 2 f ( x ) t \phi(t)=\frac{f(x-t)+f(x+t)-2f(x)}{t} ϕ(t)=tf(x−t)+f(x+t)−2f(x)如果 f ( t ) f(t) f(t)在 x x x处不连续,但左右极限都存在,则可以令 S = f ( x + 0 ) + f ( x − 0 ) 2 S=\frac{f(x+0)+f(x-0)}{2} S=2f(x+0)+f(x−0),此时 ϕ ( t ) = f ( x − t ) − f ( x − 0 ) t + f ( x + t ) − f ( x + 0 ) t \phi(t)=\frac{f(x-t)-f(x-0)}{t}+\frac{f(x+t)-f(x+0)}{t} ϕ(t)=tf(x−t)−f(x−0)+tf(x+t)−f(x+0)令 ϕ − ( t ) = f ( x − t ) − f ( x − 0 ) t , ϕ + ( t ) = f ( x + t ) − f ( x + 0 ) t \phi^-(t)=\frac{f(x-t)-f(x-0)}{t},\phi^+(t)=\frac{f(x+t)-f(x+0)}{t} ϕ−(t)=tf(x−t)−f(x−0),ϕ+(t)=tf(x+t)−f(x+0),这类似于广义的左右导数。如果两者都绝对可积或黎曼可积,那么傅里叶级数自然收敛于 S S S,实际上,不论连续与否,只要左右极限都存在,则 ϕ ( t ) = ϕ + ( t ) + ϕ − ( t ) \phi(t)=\phi^+(t)+\phi^-(t) ϕ(t)=ϕ+(t)+ϕ−(t),我们要求两者都绝对可积或黎曼可积。
定理12.4 (利普希茨判别法) f ( x ) f(x) f(x)是以 2 π 2\pi 2π为周期的函数,并且在 [ − π , π ] [-\pi,\pi] [−π,π]上只有有限个第一类间断点。若对于 x ∈ [ − π , π ] x\in [-\pi,\pi] x∈[−π,π],存在 M 1 , M 2 > 0 M_1,M_2>0 M1,M2>0及 α 1 , α 2 > 0 \alpha_1,\alpha_2 >0 α1,α2>0,使得对任意的 t > 0 t>0 t>0 ∣ f ( x + t ) − f ( x ) ∣ ≤ M 1 t α 1 |f(x+t)-f(x)|\le M_1t^{\alpha_1} ∣f(x+t)−f(x)∣≤M1tα1 ∣ f ( x − t ) − f ( x ) ∣ ≤ M 2 t α 2 |f(x-t)-f(x)|\le M_2t^{\alpha_2} ∣f(x−t)−f(x)∣≤M2tα2则 f ( x ) f(x) f(x)的傅里叶级数在 x x x处收敛于 S = f ( x + 0 ) + f ( x − 0 ) 2 S=\frac{f(x+0)+f(x-0)}{2} S=2f(x+0)+f(x−0)
证:
∣ ϕ + ( t ) ∣ ≤ M 1 t α 1 − 1 |\phi^+(t)|\le M_1 t^{\alpha_1 - 1} ∣ϕ+(t)∣≤M1tα1−1 ∣ ϕ − ( t ) ∣ ≤ M 2 t α 2 − 1 |\phi^-(t)|\le M_2 t^{\alpha_2 - 1} ∣ϕ−(t)∣≤M2tα2−1由比较判别法 ϕ + ( t ) , ϕ − ( t ) \phi^+(t),\phi^-(t) ϕ+(t),ϕ−(t)都绝对可积或黎曼可积,从而 ϕ ( t ) \phi(t) ϕ(t)绝对可积或黎曼可积
下面我们引入逐段可微的概念,所谓逐段可微,即满足:
(1)
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上只有有限个第一类间断点
a
=
x
0
≤
x
1
<
x
2
<
⋯
<
x
n
−
1
≤
b
=
x
n
a=x_0\le x_1<x_2<\cdots<x_{n-1} \le b=x_n
a=x0≤x1<x2<⋯<xn−1≤b=xn
(2)在
(
x
k
−
1
,
x
k
)
(x_{k-1},x_k)
(xk−1,xk)上,
f
(
x
)
f(x)
f(x)可微
(3)在
x
k
x_k
xk上,两个极限
lim
t
→
0
+
f
(
x
k
+
t
)
−
f
(
x
k
+
0
)
t
,
lim
t
→
0
+
f
(
x
k
−
t
)
−
f
(
x
k
−
0
)
t
\displaystyle \lim_{t\to 0^+}{\frac{f(x_k+t)-f(x_k+0)}{t}},\lim_{t\to 0^+}{\frac{f(x_k-t)-f(x_k-0)}{t}}
t→0+limtf(xk+t)−f(xk+0),t→0+limtf(xk−t)−f(xk−0)都存在
就有如下的收敛定理:
定理12.5 f ( x ) f(x) f(x)是以 2 π 2\pi 2π为周期的函数,在 [ − π , π ] [-\pi,\pi] [−π,π]上逐段可微,则若 f ( x ) ∼ a 0 + ∑ n = 1 ∞ ( a n cos ( n x ) + b n sin ( n x ) ) f(x)\sim a_0+\sum_{n=1}^\infty{(a_n\cos(nx)+b_n\sin(nx))} f(x)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))则 a 0 + ∑ n = 1 ∞ ( a n cos ( n x ) + b n sin ( n x ) ) = f ( x − 0 ) + f ( x + 0 ) 2 a_0+\sum_{n=1}^\infty{(a_n\cos(nx)+b_n\sin(nx))=\frac{f(x-0)+f(x+0)}{2}} a0+n=1∑∞(ancos(nx)+bnsin(nx))=2f(x−0)+f(x+0)
例12.6 计算级数 ∑ n = 1 ∞ 1 n 2 , ∑ n = 1 ∞ ( − 1 ) n n 2 , ∑ n = 1 ∞ 1 n 4 , ∑ n = 1 ∞ ( − 1 ) 2 n 4 \displaystyle \sum_{n=1}^\infty{\frac{1}{n^2}}, \sum_{n=1}^\infty{\frac{(-1)^n}{n^2}}, \sum_{n=1}^\infty{\frac{1}{n^4}}, \sum_{n=1}^\infty{\frac{(-1)^2}{n^4}} n=1∑∞n21,n=1∑∞n2(−1)n,n=1∑∞n41,n=1∑∞n4(−1)2
解:
前面我们已经求出了 x 2 , x 4 ( x ∈ [ − π , π ] ) x^2,x^4(x\in[-\pi,\pi]) x2,x4(x∈[−π,π])的傅里叶级数,分别是: x 2 ∼ π 2 3 + ∑ n = 1 ∞ ( 4 ( − 1 ) n n 2 ) cos ( n x ) x^2\sim\frac{\pi^2}{3}+\sum_{n=1}^\infty(\frac{4(-1)^n}{n^2})\cos{(nx)} x2∼3π2+n=1∑∞(n24(−1)n)cos(nx) x 4 ∼ π 4 5 + ∑ n = 1 ∞ ( 8 π 2 ( − 1 ) n n 2 − 48 ( − 1 ) n n 4 ) cos ( n x ) x^4\sim\frac{\pi^4}{5}+\sum_{n=1}^\infty(\frac{8\pi^2(-1)^n}{n^2}-\frac{48(-1)^n}{n^4})\cos{(nx)} x4∼5π4+n=1∑∞(n28π2(−1)n−n448(−1)n)cos(nx)由于这两个函数在延拓之后在全空间连续,并且逐段可微,因此 x 2 = π 2 3 + ∑ n = 1 ∞ ( 4 ( − 1 ) n n 2 ) cos ( n x ) x^2=\frac{\pi^2}{3}+\sum_{n=1}^\infty(\frac{4(-1)^n}{n^2})\cos{(nx)} x2=3π2+n=1∑∞(n24(−1)n)cos(nx) x 4 = π 4 5 + ∑ n = 1 ∞ ( 8 π 2 ( − 1 ) n n 2 − 48 ( − 1 ) n n 4 ) cos ( n x ) x^4=\frac{\pi^4}{5}+\sum_{n=1}^\infty(\frac{8\pi^2(-1)^n}{n^2}-\frac{48(-1)^n}{n^4})\cos{(nx)} x4=5π4+n=1∑∞(n28π2(−1)n−n448(−1)n)cos(nx)令 x = 0 x=0 x=0,有 0 = π 2 3 + 4 ∑ n = 1 ∞ ( − 1 ) n n 2 0=\frac{\pi^2}{3}+4\sum_{n=1}^\infty{\frac{(-1)^n}{n^2}} 0=3π2+4n=1∑∞n2(−1)n从而 ∑ n = 1 ∞ ( − 1 ) n n 2 = − π 2 12 \displaystyle \sum_{n=1}^\infty{\frac{(-1)^n}{n^2}}=-\frac{\pi^2}{12} n=1∑∞n2(−1)n=−12π2,令 x = π x=\pi x=π,得 π 2 = π 2 3 + 4 ∑ n = 1 ∞ 1 n 2 \pi^2=\frac{\pi^2}{3}+4\sum_{n=1}^\infty{\frac{1}{n^2}} π2=3π2+4n=1∑∞n21从而 ∑ n = 1 ∞ 1 n 2 = π 2 6 \displaystyle \sum_{n=1}^\infty{\frac{1}{n^2}}=\frac{\pi^2}{6} n=1∑∞n21=6π2,令 x = 0 x=0 x=0,有 0 = π 4 5 + 8 ∑ n = 1 ∞ ( − 1 ) n n 2 − 48 ∑ n = 1 ∞ ( − 1 ) n n 4 0=\frac{\pi^4}{5}+8\sum_{n=1}^\infty{\frac{(-1)^n}{n^2}}-48\sum_{n=1}^\infty{\frac{(-1)^n}{n^4}} 0=5π4+8n=1∑∞n2(−1)n−48n=1∑∞n4(−1)n将 ∑ n = 1 ∞ ( − 1 ) n n 2 = − π 2 12 \displaystyle \sum_{n=1}^\infty{\frac{(-1)^n}{n^2}}=-\frac{\pi^2}{12} n=1∑∞n2(−1)n=−12π2代入,得到 ∑ n = 1 ∞ ( − 1 ) n n 4 = − 7 π 4 720 \displaystyle \sum_{n=1}^\infty{\frac{(-1)^n}{n^4}}=-\frac{7\pi^4}{720} n=1∑∞n4(−1)n=−7207π4,令 x = π x=\pi x=π,得到 π 4 = π 4 5 + 8 ∑ n = 1 ∞ 1 n 2 − 48 ∑ n = 1 ∞ 1 n 4 \pi^4=\frac{\pi^4}{5}+8\sum_{n=1}^\infty{\frac{1}{n^2}}-48\sum_{n=1}^\infty{\frac{1}{n^4}} π4=5π4+8n=1∑∞n21−48n=1∑∞n41将 ∑ n = 1 ∞ 1 n 2 = π 2 6 \displaystyle \sum_{n=1}^\infty{\frac{1}{n^2}}=\frac{\pi^2}{6} n=1∑∞n21=6π2代入,得到 ∑ n = 1 ∞ 1 n 4 = π 4 90 \displaystyle \sum_{n=1}^\infty{\frac{1}{n^4}}=\frac{\pi^4}{90} n=1∑∞n41=90π4
例12.7 求 f ( x ) = e x , x ∈ ( − π , π ) f(x)=e^x,x\in(-\pi,\pi) f(x)=ex,x∈(−π,π)的傅里叶级数,并借此求解级数 ∑ n = 1 ∞ 1 1 + n 2 \displaystyle \sum_{n=1}^\infty{\frac{1}{1+n^2}} n=1∑∞1+n21
解:
先求解傅里叶级数,得到 f ( x ) ∼ e π − e − π 2 π + e π − e − π π ∑ n = 1 ∞ ( − 1 ) n n 2 + 1 [ cos ( n x ) − n sin ( n x ) ] f(x)\sim \frac{e^\pi-e^{-\pi}}{2\pi}+\frac{e^\pi-e^{-\pi}}{\pi}\sum_{n=1}^\infty\frac{(-1)^n}{n^2+1}[\cos{(nx)}-n\sin{(nx)}] f(x)∼2πeπ−e−π+πeπ−e−πn=1∑∞n2+1(−1)n[cos(nx)−nsin(nx)] f ( x ) f(x) f(x)在 [ − π , π ] [-\pi,\pi] [−π,π]上逐段可微,因此 e π − e − π 2 π + e π − e − π π ∑ n = 1 ∞ ( − 1 ) n n 2 + 1 [ cos ( n x ) − n sin ( n x ) ] = { e x − π < x < π e π + e − π 2 x = π \frac{e^\pi-e^{-\pi}}{2\pi}+\frac{e^\pi-e^{-\pi}}{\pi}\sum_{n=1}^\infty\frac{(-1)^n}{n^2+1}[\cos{(nx)}-n\sin{(nx)}]=\begin{cases} e^x&-\pi<x<\pi\\ \frac{e^\pi+e^{-\pi}}{2}&x=\pi \end{cases} 2πeπ−e−π+πeπ−e−πn=1∑∞n2+1(−1)n[cos(nx)−nsin(nx)]={ex2eπ+e−π−π<x<πx=π令 x = π x=\pi x=π,从而得到 e π + e − π 2 = e π − e − π 2 π + e π − e − π π ∑ n = 1 ∞ 1 n 2 + 1 \frac{e^\pi+e^{-\pi}}{2}=\frac{e^\pi-e^{-\pi}}{2\pi}+\frac{e^\pi-e^{-\pi}}{\pi}\sum_{n=1}^\infty{\frac{1}{n^2+1}} 2eπ+e−π=2πeπ−e−π+πeπ−e−πn=1∑∞n2+11因此, ∑ n = 1 ∞ 1 n 2 + 1 = π 2 e π + e − π e π − e − π − 1 2 \displaystyle \sum_{n=1}^\infty{\frac{1}{n^2+1}} =\frac{\pi}{2}\frac{e^\pi+e^{-\pi}}{e^\pi-e^{-\pi}}-\frac{1}{2} n=1∑∞n2+11=2πeπ−e−πeπ+e−π−21
例12.8 f ( x ) = cos α x , x ∈ ( − π , π ) f(x)=\cos{\alpha x},x\in (-\pi,\pi) f(x)=cosαx,x∈(−π,π),其中 α > 0 \alpha>0 α>0,且不为整数,求 f ( x ) f(x) f(x)的傅里叶级数,同时证明:当 z ≠ k π , k = 0 , ± 1 , ± 2 , ⋯ z \neq k\pi,k=0,\pm 1,\pm 2,\cdots z=kπ,k=0,±1,±2,⋯时,有 1 sin z = 1 z + ∑ n = 1 ∞ 2 z ( − 1 ) n z 2 − n 2 π 2 \frac{1}{\sin{z}}=\frac{1}{z}+\sum_{n=1}^\infty\frac{2z(-1)^n}{z^2-n^2\pi^2} sinz1=z1+n=1∑∞z2−n2π22z(−1)n cos z sin z = 1 z + ∑ n = 1 ∞ 2 z z 2 − n 2 π 2 \frac{\cos{z}}{\sin{z}}=\frac{1}{z}+\sum_{n=1}^\infty\frac{2z}{z^2-n^2\pi^2} sinzcosz=z1+n=1∑∞z2−n2π22z
解:
首先求解傅里叶级数,求得傅里叶级数为 f ( x ) ∼ sin ( α π ) α π + 2 α sin ( α π ) π ∑ n = 1 ∞ ( − 1 ) n α 2 − n 2 cos ( n x ) f(x)\sim \frac{\sin{(\alpha \pi)}}{\alpha \pi} +2\frac{\alpha \sin{(\alpha \pi)}}{\pi}\sum_{n=1}^\infty\frac{(-1)^n}{\alpha^2-n^2}\cos{(nx)} f(x)∼απsin(απ)+2παsin(απ)n=1∑∞α2−n2(−1)ncos(nx)首先令 x = 0 x=0 x=0,得到 1 = sin α π π [ 1 α + ∑ n = 1 ∞ 2 α ( − 1 ) n α 2 − n 2 ] 1=\frac{\sin{\alpha \pi}}{\pi}[\frac{1}{\alpha}+\sum_{n=1}^\infty \frac{2\alpha(-1)^n}{\alpha^2-n^2}] 1=πsinαπ[α1+n=1∑∞α2−n22α(−1)n]令 z = α π z=\alpha\pi z=απ,代入就得到 1 sin z = 1 z + ∑ n = 1 ∞ 2 z ( − 1 ) n z 2 − n 2 π 2 \frac{1}{\sin{z}}=\frac{1}{z}+\sum_{n=1}^\infty\frac{2z(-1)^n}{z^2-n^2\pi^2} sinz1=z1+n=1∑∞z2−n2π22z(−1)n令 x = π x=\pi x=π,得到 cos α π = sin α π π [ 1 α + ∑ n = 1 ∞ 2 α α 2 − n 2 ] \cos{\alpha \pi}=\frac{\sin{\alpha \pi}}{\pi}[\frac{1}{\alpha}+\sum_{n=1}^\infty \frac{2\alpha}{\alpha^2-n^2}] cosαπ=πsinαπ[α1+n=1∑∞α2−n22α]令 z = α π z=\alpha\pi z=απ,代入就得到 cos z sin z = 1 z + ∑ n = 1 ∞ 2 z z 2 − n 2 π 2 \frac{\cos{z}}{\sin{z}}=\frac{1}{z}+\sum_{n=1}^\infty\frac{2z}{z^2-n^2\pi^2} sinzcosz=z1+n=1∑∞z2−n2π22z
傅里叶级数的其他收敛性
一致收敛性
在前面我们证明了,只要 lim n → ∞ a n = a \displaystyle \lim_{n\to\infty}{a_n}=a n→∞liman=a,则 lim n → ∞ a 1 + a 2 + ⋯ + a n n = a \displaystyle \lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=a n→∞limna1+a2+⋯+an=a,反之不成立,说明算数平均序列比原序列有更好的收敛性。傅里叶级数也是如此,对于周期为 2 π 2\pi 2π的连续函数 f ( x ) f(x) f(x) f ( x ) ∼ a 0 + ∑ n = 1 ∞ ( a n cos ( n x ) + b n sin ( n x ) ) f(x)\sim a_0+\sum_{n=1}^\infty{(a_n\cos{(nx)}+b_n\sin{(nx)})} f(x)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))前面已经推导出 S n ( x ) = a 0 + ∑ k = 1 n ( a k cos ( k x ) + b k sin ( n x ) ) = 1 π ∫ − π π f ( x + t ) sin ( n + 1 2 ) t 2 sin t 2 d t S_n(x)=a_0+\sum_{k=1}^n{(a_k\cos{(kx)}+b_k\sin(nx))}\\=\frac{1}{\pi}\int_{-\pi}^\pi{ f(x+t)\frac{ \sin(n+\frac{1}{2})t } { 2\sin\frac{t}{2} }dt } Sn(x)=a0+k=1∑n(akcos(kx)+bksin(nx))=π1∫−ππf(x+t)2sin2tsin(n+21)tdt令 K n ( x ) = S 0 ( x ) + S 1 ( x ) + ⋯ + S n ( x ) n + 1 = 1 ( n + 1 ) π ∫ − π π f ( x + t ) ∑ k = 0 n sin ( k + 1 2 ) t 2 sin ( t 2 ) d t K_n(x)=\frac{S_0(x)+S_1(x)+\cdots+S_n(x)}{n+1}\\=\frac{1}{(n+1)\pi}\int_{-\pi}^\pi{ f(x+t)\frac{ \sum_{k=0}^n{\sin(k+\frac{1}{2})t} }{ 2\sin(\frac{t}{2}) }dt } Kn(x)=n+1S0(x)+S1(x)+⋯+Sn(x)=(n+1)π1∫−ππf(x+t)2sin(2t)∑k=0nsin(k+21)tdt而 sin ( t 2 ) ∑ k = 0 n sin ( k + 1 2 ) t = 1 2 ∑ k = 0 n ( cos ( k t ) − cos ( k + 1 ) t ) = 1 − cos ( n + 1 ) t 2 = sin 2 ( n + 1 ) t 2 \sin(\frac{t}{2})\sum_{k=0}^n{\sin(k+\frac{1}{2})t}=\frac{1}{2}\sum_{k=0}^n(\cos(kt)-\cos(k+1)t) \\=\frac{1-\cos(n+1)t}{2}=\sin^2\frac{(n+1)t}{2} sin(2t)k=0∑nsin(k+21)t=21k=0∑n(cos(kt)−cos(k+1)t)=21−cos(n+1)t=sin22(n+1)t因此 K n ( x ) = 1 ( n + 1 ) π ∫ − π π f ( x + t ) sin 2 ( n + 1 ) t 2 2 sin 2 ( t 2 ) d t K_n(x)=\frac{1}{(n+1)\pi}\int_{-\pi}^\pi{ f(x+t)\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt } Kn(x)=(n+1)π1∫−ππf(x+t)2sin2(2t)sin22(n+1)tdt令 f ( x ) = 1 f(x)=1 f(x)=1, K n ( x ) = 1 K_n(x)=1 Kn(x)=1,因此 1 ( n + 1 ) π ∫ − π π sin 2 ( n + 1 ) t 2 2 sin 2 ( t 2 ) d t = 1 \frac{1}{(n+1)\pi}\int_{-\pi}^\pi{ \frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt }=1 (n+1)π1∫−ππ2sin2(2t)sin22(n+1)tdt=1 K n ( x ) − f ( x ) = 1 ( n + 1 ) π ∫ − π π [ f ( x + t ) − f ( x ) ] sin 2 ( n + 1 ) t 2 2 sin 2 ( t 2 ) d t K_n(x)-f(x)=\frac{1}{(n+1)\pi}\int_{-\pi}^\pi{ [f(x+t)-f(x)]\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt } Kn(x)−f(x)=(n+1)π1∫−ππ[f(x+t)−f(x)]2sin2(2t)sin22(n+1)tdt作积分变换,得到 K n ( x ) − f ( x ) = 1 ( n + 1 ) π ∫ − π π [ f ( x + t ) − f ( x ) ] sin 2 ( n + 1 ) t 2 2 sin 2 ( t 2 ) d t = 1 ( n + 1 ) π ∫ 0 π [ f ( x + t ) + f ( x − t ) − 2 f ( x ) ] sin 2 ( n + 1 ) t 2 2 sin 2 ( t 2 ) d t K_n(x)-f(x)=\frac{1}{(n+1)\pi}\int_{-\pi}^\pi{ [f(x+t)-f(x)]\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt }\\=\frac{1}{(n+1)\pi}\int_0^\pi{ [f(x+t)+f(x-t)-2f(x)]\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt } Kn(x)−f(x)=(n+1)π1∫−ππ[f(x+t)−f(x)]2sin2(2t)sin22(n+1)tdt=(n+1)π1∫0π[f(x+t)+f(x−t)−2f(x)]2sin2(2t)sin22(n+1)tdt下面我们证明以下的定理
定理12.6 f ( x ) f(x) f(x)是以 2 π 2\pi 2π为周期的连续函数,并且 f ( x ) ∼ a 0 + ∑ n = 1 ∞ ( a n cos ( n x ) + b n sin ( n x ) ) f(x)\sim a_0+\sum_{n=1}^\infty(a_n\cos(nx)+b_n\sin(nx)) f(x)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))令 S n ( x ) = a 0 + ∑ k = 1 n ( a k cos ( k x ) + b k sin ( n x ) ) S_n(x)=a_0+\sum_{k=1}^n{(a_k\cos{(kx)}+b_k\sin(nx))} Sn(x)=a0+∑k=1n(akcos(kx)+bksin(nx)), K n ( x ) = S 0 ( x ) + S 1 ( x ) + ⋯ + S n ( x ) n + 1 K_n(x)=\frac{S_0(x)+S_1(x)+\cdots+S_n(x)}{n+1} Kn(x)=n+1S0(x)+S1(x)+⋯+Sn(x),则 { K n ( x ) } \{K_n(x)\} {Kn(x)}一致收敛到 f ( x ) f(x) f(x)
证:
由于 f ( x ) f(x) f(x)以 2 π 2\pi 2π为周期且连续,因此 f ( x ) f(x) f(x)在 ( − ∞ , ∞ ) (-\infty,\infty) (−∞,∞)上一致连续。 ∀ ε > 0 \forall \varepsilon >0 ∀ε>0, ∃ δ > 0 \exists \delta>0 ∃δ>0,当 ∣ x 1 − x 2 ∣ < δ |x_1-x_2|<\delta ∣x1−x2∣<δ时,有 ∣ f ( x 1 ) − f ( x 2 ) ∣ < ε 4 |f(x_1)-f(x_2)| < \frac{\varepsilon}{4} ∣f(x1)−f(x2)∣<4ε,则 1 ( n + 1 ) π ∫ 0 δ [ f ( x + t ) + f ( x − t ) − 2 f ( x ) ] sin 2 ( n + 1 ) t 2 2 sin 2 ( t 2 ) d t ≤ 1 ( n + 1 ) π ∫ 0 δ [ ∣ f ( x + t ) − f ( x ) ∣ + ∣ f ( x − t ) − f ( x ) ∣ ] sin 2 ( n + 1 ) t 2 2 sin 2 ( t 2 ) d t ≤ ε 2 1 ( n + 1 ) π ∫ 0 δ sin 2 ( n + 1 ) t 2 2 sin 2 ( t 2 ) d t ≤ ε 2 1 ( n + 1 ) π ∫ − π π sin 2 ( n + 1 ) t 2 2 sin 2 ( t 2 ) d t = ε 2 \frac{1}{(n+1)\pi}\int_0^\delta{ [f(x+t)+f(x-t)-2f(x)]\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt }\\\le \frac{1}{(n+1)\pi}\int_0^\delta{ [|f(x+t)-f(x)|+|f(x-t)-f(x)|]\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt }\\ \le\frac{\varepsilon}{2}\frac{1}{(n+1)\pi}\int_0^\delta\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt \le\frac{\varepsilon}{2}\frac{1}{(n+1)\pi}\int_{-\pi}^\pi\frac{ \sin^2\frac{(n+1)t}{2} }{ 2\sin^2(\frac{t}{2}) }dt=\frac{\varepsilon}{2} (n+1)π1∫0δ[f(x+t)+f(x−t)−2f(x)]2sin2(2t)sin22(n+1)tdt≤(n+1)π1∫0δ[∣f(x+t)−f(x)∣+∣f(x−t)−f(x)∣]2sin2(2t)sin22(n+1)tdt≤2ε(n+1)π1∫0δ2sin2(2t)sin22(n+1)tdt≤2ε(n+1)π1∫−ππ2sin2(2t)sin22(n+1)tdt=2ε作估计 ∣ sin ( n + 1 ) t 2 2 ( n + 1 ) sin t 2 ∣ ≤ ( n + 1 ) t 2 2 ( n + 1 ) sin t 2 = t 4 sin t 2 |\frac {\sin\frac{(n+1)t}{2}} {2(n+1)\sin\frac{t}{2}}|\le \frac {\frac{(n+1)t}{2}} {2(n+1)\sin\frac{t}{2}}=\frac{t}{4\sin{\frac{t}{2}}} ∣2(n+1)sin2tsin2(n+1)t∣≤2(n+1)sin2t2(n+1)t=4sin2tt在 [ δ , π ] [\delta,\pi] [δ,π]上,令 ϕ ( t ) = f ( x + t ) + f ( x − t ) − 2 f ( x ) \phi(t)=f(x+t)+f(x-t)-2f(x) ϕ(t)=f(x+t)+f(x−t)−2f(x),由于 f ( x ) f(x) f(x)是以 2 π 2\pi 2π为周期的函数, f ( x ) f(x) f(x)有界,设 f ( x ) ≤ M f(x)\le M f(x)≤M,则 ∣ ϕ ( t ) ∣ ≤ 4 M |\phi(t)|\le 4M ∣ϕ(t)∣≤4M,则 ∣ 1 ( n + 1 ) π ∫ δ π ϕ ( t ) sin 2 ( n + 1 ) t 2 2 sin 2 t 2 d t ∣ ≤ 2 M π ∫ δ π t sin 2 t 2 sin ( n + 1 ) t 2 d t \left|\frac{1}{(n+1)\pi}\int_\delta^\pi\phi(t)\frac{\sin^2\frac{(n+1)t}{2}}{2\sin^2\frac{t}{2}}dt\right|\le \frac{2M}{\pi}\int_\delta^\pi\frac{t}{\sin^2\frac{t}{2}}\sin\frac{(n+1)t}{2}dt ∣∣∣∣∣(n+1)π1∫δπϕ(t)2sin22tsin22(n+1)tdt∣∣∣∣∣≤π2M∫δπsin22ttsin2(n+1)tdt由于 t sin 2 t 2 \frac{t}{\sin^2\frac{t}{2}} sin22tt在 [ δ , π ] [\delta,\pi] [δ,π]上连续,由黎曼勒贝格引理,存在 N N N, n ≥ N n\ge N n≥N时,就有 ∫ δ π t sin 2 t 2 sin ( n + 1 ) t 2 d t < π ε 4 M \int_\delta^\pi\frac{t}{\sin^2\frac{t}{2}}\sin\frac{(n+1)t}{2}dt<\frac{\pi\varepsilon}{4M} ∫δπsin22ttsin2(n+1)tdt<4Mπε此时就有 ∣ 1 ( n + 1 ) π ∫ δ π ϕ ( t ) sin 2 ( n + 1 ) t 2 2 sin 2 t 2 d t ∣ < ε 2 \displaystyle \left|\frac{1}{(n+1)\pi}\int_\delta^\pi\phi(t)\frac{\sin^2\frac{(n+1)t}{2}}{2\sin^2\frac{t}{2}}dt\right|<\frac{\varepsilon}{2} ∣∣∣∣∣(n+1)π1∫δπϕ(t)2sin22tsin22(n+1)tdt∣∣∣∣∣<2ε,因此,对任意的 x ∈ R x\in R x∈R, n ≥ N n\ge N n≥N时,都有 ∣ K n ( x ) − f ( x ) ∣ ≤ ∣ 1 ( n + 1 ) π ∫ 0 δ ϕ ( t ) sin 2 ( n + 1 ) t 2 2 sin 2 t 2 d t ∣ + ∣ 1 ( n + 1 ) π ∫ δ π ϕ ( t ) sin 2 ( n + 1 ) t 2 2 sin 2 t 2 d t ∣ < ε |K_n(x)-f(x)|\le \left|\frac{1}{(n+1)\pi}\int_0^\delta\phi(t)\frac{\sin^2\frac{(n+1)t}{2}}{2\sin^2\frac{t}{2}}dt\right|\\+\left|\frac{1}{(n+1)\pi}\int_\delta^\pi\phi(t)\frac{\sin^2\frac{(n+1)t}{2}}{2\sin^2\frac{t}{2}}dt\right| <\varepsilon ∣Kn(x)−f(x)∣≤∣∣∣∣∣(n+1)π1∫0δϕ(t)2sin22tsin22(n+1)tdt∣∣∣∣∣+∣∣∣∣∣(n+1)π1∫δπϕ(t)2sin22tsin22(n+1)tdt∣∣∣∣∣<ε
注意到 K n ( x ) K_n(x) Kn(x)是一个次数不超过 n n n的三角多项式, K n ( x ) K_n(x) Kn(x)一致收敛到 f ( x ) f(x) f(x),可以理解为用一系列三角多项式逼近 f ( x ) f(x) f(x),于是就有
推论12.1 f ( x ) f(x) f(x)是以 2 π 2\pi 2π为周期的连续函数,则 f ( x ) f(x) f(x)在 ( − ∞ , ∞ ) (-\infty,\infty) (−∞,∞)上可被三角多项式逼近
推论12.2 f ( x ) f(x) f(x)是以 2 π 2\pi 2π为周期的连续函数,若其傅里叶系数全为0,则 f ( x ) f(x) f(x)恒为0
证:由于 f ( x ) f(x) f(x)是以 2 π 2\pi 2π为周期的连续函数,且傅里叶系数全为0,则 ∀ x ∈ R \forall x \in R ∀x∈R, K n ( x ) = 0 K_n(x)=0 Kn(x)=0,而 lim n → ∞ K n ( x ) = f ( x ) = 0 \displaystyle\lim_{n\to\infty}K_n(x)=f(x)=0 n→∞limKn(x)=f(x)=0
均方收敛
现在我们考虑以
2
π
2\pi
2π为周期的函数
f
(
x
)
f(x)
f(x),如果
f
(
x
)
f(x)
f(x)在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]上黎曼可积,
f
2
(
x
)
f^2(x)
f2(x)在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]上也黎曼可积,若
f
(
x
)
f(x)
f(x)在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]上绝对可积,我们要求
f
2
(
x
)
f^2(x)
f2(x)在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]上也收敛,这两种情况我们统称为
平
方
可
积
‾
\underline{平方可积}
平方可积。如果定义两个函数之间的内积为
(
f
,
g
)
=
∫
−
π
π
f
(
x
)
g
(
x
)
d
x
\displaystyle(f,g)=\int_{-\pi}^\pi f(x)g(x)dx
(f,g)=∫−ππf(x)g(x)dx,两个函数的距离定义为
(
f
−
g
,
f
−
g
)
\sqrt{(f-g,f-g)}
(f−g,f−g)。现在,我们想要寻找一个
n
n
n次三角多项式
S
n
(
x
)
=
a
0
∗
+
∑
k
=
1
n
(
a
k
∗
cos
(
k
x
)
+
b
k
∗
sin
(
k
x
)
)
S_n(x)=a_0^*+\sum_{k=1}^n(a_k^*\cos(kx)+b_k^*\sin(kx))
Sn(x)=a0∗+k=1∑n(ak∗cos(kx)+bk∗sin(kx))使得
f
(
x
)
f(x)
f(x)与
S
n
(
x
)
S_n(x)
Sn(x)的距离最短,那么系数应当怎么定呢?实际上
(
f
(
x
)
−
S
n
(
x
)
,
f
(
x
)
−
S
n
(
x
)
)
=
(
f
(
x
)
,
f
(
x
)
)
−
2
(
f
(
x
)
,
S
n
(
x
)
)
+
(
S
n
(
x
)
,
S
n
(
x
)
)
(f(x)-S_n(x),f(x)-S_n(x))\\=(f(x),f(x))-2(f(x),S_n(x))+(S_n(x),S_n(x))
(f(x)−Sn(x),f(x)−Sn(x))=(f(x),f(x))−2(f(x),Sn(x))+(Sn(x),Sn(x))在上式中
(
f
(
x
)
,
f
(
x
)
)
=
∫
−
π
π
f
2
(
x
)
d
x
(f(x),f(x))=\int_{-\pi}^\pi{f^2(x)dx}
(f(x),f(x))=∫−ππf2(x)dx
(
f
(
x
)
,
S
n
(
x
)
)
=
π
∑
k
=
1
n
(
a
k
∗
a
k
+
b
k
∗
b
k
)
+
2
π
a
0
∗
a
0
(f(x),S_n(x))=\pi\sum_{k=1}^n(a_k^*a_k+b_k^*b_k)+2\pi a_0^*a_0
(f(x),Sn(x))=πk=1∑n(ak∗ak+bk∗bk)+2πa0∗a0
(
S
n
(
x
)
,
S
n
(
x
)
)
=
2
π
a
0
∗
2
+
π
∑
k
=
1
n
(
a
n
∗
2
+
b
n
∗
2
)
(S_n(x),S_n(x))=2\pi a_0^{*2}+\pi\sum_{k=1}^n(a_n^{*2}+b_n^{*2})
(Sn(x),Sn(x))=2πa0∗2+πk=1∑n(an∗2+bn∗2)于是
(
f
−
S
n
,
f
−
S
n
)
=
2
π
(
a
0
∗
2
−
2
a
0
∗
a
0
)
+
π
∑
k
=
1
n
[
(
a
k
∗
2
−
2
a
k
∗
a
k
)
+
(
b
k
∗
2
−
2
b
k
∗
b
k
)
]
+
∫
−
π
π
f
2
(
x
)
d
x
(f-S_n,f-S_n)=2\pi(a_0^{*2}-2a_0^*a_0)+ \\\pi\sum_{k=1}^n[(a_k^{*2}-2a_k^*a_k)+(b_k^{*2}-2b_k^*b_k)]+\int_{-\pi}^\pi f^2(x)dx
(f−Sn,f−Sn)=2π(a0∗2−2a0∗a0)+πk=1∑n[(ak∗2−2ak∗ak)+(bk∗2−2bk∗bk)]+∫−ππf2(x)dx很容易看出,当
a
k
∗
=
a
k
,
k
=
0
,
1
,
⋯
,
n
a_k^*=a_k,k=0,1,\cdots,n
ak∗=ak,k=0,1,⋯,n,
b
k
∗
=
b
k
,
k
=
1
,
⋯
,
n
b_k^*=b^k,k=1,\cdots,n
bk∗=bk,k=1,⋯,n时,
(
f
−
S
n
,
f
−
S
n
)
(f-S_n,f-S_n)
(f−Sn,f−Sn)最小,此时
(
f
−
S
n
,
f
−
S
n
)
=
−
2
π
a
0
2
−
π
∑
k
=
1
n
(
a
k
2
+
b
k
2
)
+
∫
−
π
π
f
2
(
x
)
d
x
≥
0
(f-S_n,f-S_n)=-2\pi a_0^2-\pi \sum_{k=1}^n(a_k^2+b_k^2)+\int_{-\pi}^\pi f^2(x)dx\ge 0
(f−Sn,f−Sn)=−2πa02−πk=1∑n(ak2+bk2)+∫−ππf2(x)dx≥0就得到不等式
1
π
∫
−
π
π
f
2
(
x
)
d
x
≥
2
a
0
2
+
∑
k
=
1
n
(
a
k
2
+
b
k
2
)
\frac{1}{\pi}\int_{-\pi}^\pi f^2(x)dx\ge 2a_0^2+\sum_{k=1}^n(a_k^2+b_k^2)
π1∫−ππf2(x)dx≥2a02+k=1∑n(ak2+bk2)并且这对任意的
n
n
n都成立,这说明级数
2
a
0
2
+
∑
n
=
1
∞
(
a
n
2
+
b
n
2
)
\displaystyle 2a_0^2+\sum_{n=1}^\infty(a_n^2+b_n^2)
2a02+n=1∑∞(an2+bn2)绝对收敛,并且
2
a
0
2
+
∑
n
=
1
∞
(
a
n
2
+
b
n
2
)
≤
1
π
∫
−
π
π
f
2
(
x
)
d
x
2a_0^2+\sum_{n=1}^\infty(a_n^2+b_n^2) \le \frac{1}{\pi}\int_{-\pi}^\pi f^2(x)dx
2a02+n=1∑∞(an2+bn2)≤π1∫−ππf2(x)dx
定理12.7(Bassel不等式) 若绝对可积函数
f
(
x
)
f(x)
f(x)以
2
π
2\pi
2π为周期,且在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]上平方可积,
f
(
x
)
∼
a
0
+
∑
n
=
1
∞
(
a
n
cos
(
n
x
)
+
b
n
sin
(
n
x
)
)
f(x)\sim a_0+\sum_{n=1}^\infty{(a_n\cos(nx)+b_n\sin(nx))}
f(x)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))则级数
2
a
0
2
+
∑
n
=
1
∞
(
a
n
2
+
b
n
2
)
\displaystyle 2a_0^2+\sum_{n=1}^\infty(a_n^2+b_n^2)
2a02+n=1∑∞(an2+bn2)绝对收敛,并且成立不等式:
2
a
0
2
+
∑
n
=
1
∞
(
a
n
2
+
b
n
2
)
≤
1
π
∫
−
π
π
f
2
(
x
)
d
x
2a_0^2+\sum_{n=1}^\infty(a_n^2+b_n^2) \le \frac{1}{\pi}\int_{-\pi}^\pi f^2(x)dx
2a02+n=1∑∞(an2+bn2)≤π1∫−ππf2(x)dx
接下来的问题是:这个不等式能否划上等号呢?答案是,我们先放宽条件来考察这个问题。如果
f
(
x
)
f(x)
f(x)是以
2
π
2\pi
2π为周期的连续函数,则存在三角多项式
T
(
x
)
T(x)
T(x),使得对任意的
ε
>
0
\varepsilon>0
ε>0,对任意的
x
x
x,都有
∣
f
(
x
)
−
T
(
x
)
∣
<
ε
2
\left| f(x) - T(x) \right|<\sqrt{\frac{\varepsilon}{2}}
∣f(x)−T(x)∣<2ε从而
1
π
∫
−
π
π
[
f
(
x
)
−
T
(
x
)
]
2
d
x
<
ε
\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-T(x)]^2dx<\varepsilon
π1∫−ππ[f(x)−T(x)]2dx<ε假设
T
(
x
)
T(x)
T(x)是
n
0
n_0
n0次三角多项式,则
1
π
∫
−
π
π
[
f
(
x
)
−
S
n
0
(
x
)
]
2
d
x
≤
1
π
∫
−
π
π
[
f
(
x
)
−
T
(
x
)
]
2
d
x
<
ε
\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-S_{n_0}(x)]^2dx \le \frac{1}{\pi}\int_{-\pi}^\pi[f(x)-T(x)]^2dx<\varepsilon
π1∫−ππ[f(x)−Sn0(x)]2dx≤π1∫−ππ[f(x)−T(x)]2dx<ε当
n
≥
n
0
n\ge n_0
n≥n0时,都有
1
π
∫
−
π
π
[
f
(
x
)
−
S
n
(
x
)
]
2
d
x
≤
1
π
∫
−
π
π
[
f
(
x
)
−
S
n
0
(
x
)
]
2
d
x
<
ε
\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-S_{n}(x)]^2dx \le \frac{1}{\pi}\int_{-\pi}^\pi[f(x)-S_{n_0}(x)]^2dx <\varepsilon
π1∫−ππ[f(x)−Sn(x)]2dx≤π1∫−ππ[f(x)−Sn0(x)]2dx<ε从而
lim
n
→
∞
1
π
∫
−
π
π
[
f
(
x
)
−
S
n
(
x
)
]
2
d
x
=
0
\lim_{n\to\infty}\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-S_{n}(x)]^2dx=0
n→∞limπ1∫−ππ[f(x)−Sn(x)]2dx=0从而不等式可以改成等式,假设
f
(
x
)
f(x)
f(x)以
2
π
2\pi
2π为周期,并且在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]上可积,我们想先用一个连续函数逼近可积函数,最容易想到的连续函数是分段线性函数,由于
f
(
x
)
f(x)
f(x)在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]上可积,对任意的
ε
>
0
\varepsilon>0
ε>0,由于
f
(
x
)
f(x)
f(x)有界,设
∣
f
(
x
)
∣
≤
M
|f(x)|\le M
∣f(x)∣≤M,取
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]的一个分划
Δ
:
−
π
=
x
0
<
x
1
<
⋯
<
x
n
=
π
\Delta:-\pi=x_0<x_1<\cdots<x_n=\pi
Δ:−π=x0<x1<⋯<xn=π,其中
ω
k
\omega_k
ωk为
f
(
x
)
f(x)
f(x)在
[
x
k
−
1
,
x
k
]
[x_{k-1},x_k]
[xk−1,xk]上的振幅
(
k
=
1
,
⋯
,
n
)
(k=1,\cdots,n)
(k=1,⋯,n),要求该分划满足
∑
k
=
1
n
ω
k
Δ
x
k
<
π
ε
2
2
M
\sum_{k=1}^n\omega_k\Delta x_k <\frac{\pi \varepsilon^2}{2M}
k=1∑nωkΔxk<2Mπε2连接
(
x
k
−
1
,
f
(
x
k
−
1
)
)
(x_{k-1},f(x_{k-1}))
(xk−1,f(xk−1))和
(
x
k
,
f
(
x
k
)
)
(x_k,f(x_k))
(xk,f(xk))再进行周期延拓,得到分段线性并以
2
π
2\pi
2π为周期的连续函数
g
(
x
)
g(x)
g(x),当
x
∈
[
x
k
−
1
,
x
k
]
x\in [x_{k-1},x_{k}]
x∈[xk−1,xk]时,存在
λ
∈
[
0
,
1
]
\lambda\in[0,1]
λ∈[0,1],使得
g
(
x
)
=
λ
f
(
x
k
−
1
)
+
(
1
−
λ
)
f
(
x
k
)
g(x)=\lambda f(x_{k-1}) + (1-\lambda)f(x_k)
g(x)=λf(xk−1)+(1−λ)f(xk)从而
∣
g
(
x
)
−
f
(
x
)
∣
≤
λ
∣
f
(
x
k
−
1
)
−
f
(
x
)
∣
+
(
1
−
λ
)
∣
f
(
x
k
−
1
)
−
f
(
x
)
∣
≤
ω
k
\left|g(x)-f(x)\right|\le \lambda \left|f(x_{k-1})-f(x)\right|+(1-\lambda)\left|f(x_{k-1})-f(x)\right|\le\omega_k
∣g(x)−f(x)∣≤λ∣f(xk−1)−f(x)∣+(1−λ)∣f(xk−1)−f(x)∣≤ωk同理,设
∣
f
(
x
)
∣
≤
M
|f(x)|\le M
∣f(x)∣≤M,则
∣
g
(
x
)
∣
≤
M
|g(x)|\le M
∣g(x)∣≤M,则
∣
g
(
x
)
−
f
(
x
)
∣
≤
2
M
|g(x)-f(x)|\le 2M
∣g(x)−f(x)∣≤2M,于是
1
π
∫
−
π
π
[
f
(
x
)
−
g
(
x
)
]
2
d
x
≤
2
M
π
∫
−
π
π
∣
f
(
x
)
−
g
(
x
)
∣
d
x
=
2
M
π
∑
k
=
1
n
∫
x
k
−
1
x
k
∣
f
(
x
)
−
g
(
x
)
∣
d
x
≤
2
M
π
∑
k
=
1
n
ω
k
Δ
x
k
<
ε
\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-g(x)]^2dx\le\frac{2M}{\pi}\int_{-\pi}^\pi|f(x)-g(x)|dx \\=\frac{2M}{\pi}\sum_{k=1}^n\int_{x_{k-1}}^{x_k}|f(x)-g(x)|dx \le\frac{2M}{\pi}\sum_{k=1}^n\omega_k\Delta x_k<\varepsilon
π1∫−ππ[f(x)−g(x)]2dx≤π2M∫−ππ∣f(x)−g(x)∣dx=π2Mk=1∑n∫xk−1xk∣f(x)−g(x)∣dx≤π2Mk=1∑nωkΔxk<ε存在三角多项式
T
(
x
)
T(x)
T(x),满足
1
π
∫
−
π
π
[
g
(
x
)
−
T
(
x
)
]
2
d
x
<
ε
\frac{1}{\pi}\int_{-\pi}^\pi[g(x)-T(x)]^2dx<\varepsilon
π1∫−ππ[g(x)−T(x)]2dx<ε有
1
π
∫
−
π
π
[
f
(
x
)
−
T
(
x
)
]
2
d
x
≤
2
π
∫
−
π
π
[
f
(
x
)
−
g
(
x
)
]
2
d
x
+
2
π
∫
−
π
π
[
g
(
x
)
−
T
(
x
)
]
2
d
x
<
4
ε
\frac{1}{\pi} \int_{-\pi}^\pi[f(x)-T(x)]^2dx \le \frac{2}{\pi} \int_{-\pi}^\pi[f(x)-g(x)]^2dx\\+ \frac{2}{\pi} \int_{-\pi}^\pi[g(x)-T(x)]^2dx <4\varepsilon
π1∫−ππ[f(x)−T(x)]2dx≤π2∫−ππ[f(x)−g(x)]2dx+π2∫−ππ[g(x)−T(x)]2dx<4ε用类似的方法可以证明,贝塞尔不等式也可以取等号,若
f
(
x
)
f(x)
f(x)有有限个瑕点,绝对可积且平方可积时,假设
f
(
x
)
f(x)
f(x)唯一的瑕点是
x
∈
(
−
π
,
π
)
x\in(-\pi,\pi)
x∈(−π,π),
∀
ε
>
0
\forall \varepsilon>0
∀ε>0,存在
δ
>
0
\delta>0
δ>0,使得
∫
c
−
δ
c
+
δ
f
2
(
x
)
d
x
<
ε
4
\int_{c-\delta}^{c+\delta}f^2(x)dx<\frac{\varepsilon}{4}
∫c−δc+δf2(x)dx<4ε这里设
c
+
δ
<
π
,
c
−
δ
>
−
π
c+\delta<\pi,c-\delta>-\pi
c+δ<π,c−δ>−π,构造以
2
π
2\pi
2π为周期的函数
f
‾
(
x
)
=
{
0
c
−
δ
<
x
<
c
+
δ
f
(
x
)
−
π
≤
x
≤
c
−
δ
或
c
+
δ
≤
x
≤
π
\overline{f}(x)=\begin{cases} 0&c-\delta<x<c+\delta\\ f(x)&-\pi\le x\le c-\delta 或 c+\delta\le x\le\pi \end{cases}
f(x)={0f(x)c−δ<x<c+δ−π≤x≤c−δ或c+δ≤x≤π
f
‾
(
x
)
\overline{f}(x)
f(x)在
[
−
π
,
π
]
[-\pi,\pi]
[−π,π]上可积,存在三角多项式
T
(
x
)
T(x)
T(x),满足
1
π
∫
−
π
π
[
f
‾
(
x
)
−
T
(
x
)
]
2
d
x
<
ε
4
\frac{1}{\pi}\int_{-\pi}^\pi[\overline{f}(x)-T(x)]^2dx<\frac{\varepsilon}{4}
π1∫−ππ[f(x)−T(x)]2dx<4ε于是
1
π
∫
−
π
π
[
f
(
x
)
−
T
(
x
)
]
2
d
x
≤
2
π
∫
−
π
π
[
f
(
x
)
−
f
‾
(
x
)
]
2
d
x
+
2
π
∫
−
π
π
[
T
(
x
)
−
f
‾
(
x
)
]
2
d
x
<
ε
\frac{1}{\pi}\int_{-\pi}^\pi[f(x)-T(x)]^2dx \le \frac{2}{\pi}\int_{-\pi}^\pi[f(x)-\overline{f}(x)]^2dx\\+\frac{2}{\pi}\int_{-\pi}^\pi[T(x)-\overline{f}(x)]^2dx<\varepsilon
π1∫−ππ[f(x)−T(x)]2dx≤π2∫−ππ[f(x)−f(x)]2dx+π2∫−ππ[T(x)−f(x)]2dx<ε类似地,就容易得到
定理12.8(帕萨瓦尔等式) f ( x ) f(x) f(x)是以 2 π 2\pi 2π为周期的函数,若 f ( x ) f(x) f(x)在 [ − π , π ] [-\pi,\pi] [−π,π]上可积或绝对可积且平方可积 f ( x ) ∼ a 0 + ∑ n = 1 ∞ ( a n cos ( n x ) + b n sin ( n x ) ) f(x)\sim a_0+\sum_{n=1}^\infty(a_n\cos(nx)+b_n\sin(nx)) f(x)∼a0+n=1∑∞(ancos(nx)+bnsin(nx))则成立帕萨瓦尔等式 2 a 0 2 + ∑ n = 1 ∞ ( a n 2 + b n 2 ) = 1 π ∫ − π π f 2 ( x ) d x 2a_0^2+\sum_{n=1}^\infty(a_n^2+b_n^2)=\frac{1}{\pi}\int_{-\pi}^\pi f^2(x)dx 2a02+n=1∑∞(an2+bn2)=π1∫−ππf2(x)dx
这等价于 lim n → ∞ ∫ − π π [ f ( x ) − S n ( x ) ] 2 d x = 0 \displaystyle \lim_{n\to\infty} \int_{-\pi}^\pi[f(x)-S_n(x)]^2dx=0 n→∞lim∫−ππ[f(x)−Sn(x)]2dx=0,称为 S n ( x ) S_n(x) Sn(x)平方收敛到 f ( x ) f(x) f(x)。