机器学习
文章平均质量分 82
白衣西蜀梅子酒
工作原因,不常看博客,如有相关问题想要探讨,可以添加wx13828730624。
展开
-
机器学习python代码
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、线性回归1.1 单特征的线性回归1.2 多特征的线性回归1.3 正规方程二、logistic 回归2.1 plot data2.2 单特征的logistic回归2.3 多特征的logistic回归三、Neural Network3.1 plot data3.2 Neural Network四、交叉验证误差五、SVM大间距分类器5.1 线性svm5.2 非线性SVM六、K-means6.1 K-Means应用6.2 K-Mea原创 2021-09-15 08:48:27 · 205 阅读 · 0 评论 -
机器学习笔记(十五)大规模机器学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录十五、大规模机器学习15.1 随机梯度下降(stochastic gradient descent)15.2 小批量梯度下降15.3 大规模数据下的收敛判断以及参数选择15.4 Online Learning15.5 映射约减(Mapreduce function)十五、大规模机器学习我们已经知道,得到一个高效的机器学习系统的最好的方式之一是,用一个低偏差(low bias)的学习算法,然后用很多数据来训练它。但是同样的,当原创 2021-09-08 13:29:58 · 179 阅读 · 0 评论 -
机器学习笔记(十四)推荐系统
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录十四、推荐系统14.1 例子:电影评分预测14.2 基于内容的推荐14.3 协同过滤14.4 协同过滤优化改进14.5 协同过滤向量化14.6 均值归一化十四、推荐系统14.1 例子:电影评分预测给定这些数据,给定这些 r(i,j)和 y(i,j) 数值,然后浏览全部数据,关注所有没有电影评分的地方,并试图预测这些带问号的地方应该是什么数值,然后向用户推荐新电影。14.2 基于内容的推荐对于每一部电影,我们都有一个特征向原创 2021-09-08 13:28:42 · 91 阅读 · 0 评论 -
机器学习笔记(十三)异常检测
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录十三、异常检测(Density Estimation)13.1 异常检测13.2 高斯分布13.3 参数估计13.4 异常检测算法13.5 设计与评估异常检测系统13.6 异常检测与监督学习比较13.7 选择合适的特征13.8 多元高斯分布13.9 基于多元高斯分布的异常检测算法十三、异常检测(Density Estimation)13.1 异常检测所谓异常检测就是发现与大部分对象不同的对象,其实就是发现离群点,异常检测有原创 2021-09-01 12:04:15 · 402 阅读 · 0 评论 -
机器学习笔记(十一)聚类与K均值算法
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言十一、聚类11.1 K-means 算法11.2 优化目标函数11.3 随机选择聚类中心11.4 选择聚类中心的个数前言例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考十一、聚类在非监督学习中我们要做的是给这种没有标记的训练集合一个算法并且通过算法来为我们定义一些数据的结构。对于这种结构的数据集原创 2021-09-01 12:03:38 · 193 阅读 · 0 评论 -
机器学习笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、机器学习概述1.1 机器学习是什么?1.1.1 概述1.1.2 对于机器学习的不同定义1.2 学习算法1.2.1 有监督学习1.2.2 无监督学习二、线性回归算法2.1 模型表示2.2 代价函数2.2.1 数学定义2.2.2前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容原创 2021-08-04 13:55:27 · 1869 阅读 · 0 评论