Clearing the Skies: A deep network architecture for single-image rain removal

Clearing the Skies: A deep network architecture for single-image rain removal

贡献

1)DerainNet在细节层而不是图像域上进行训练可以改善对网络权重的学习,从而改善排水效果,而无需大量增加训练数据或计算资源。
2)合成的雨天图像上进行训练,但是在实际的雨天图像上进行测试时,

在这里插入图片描述
利用低通滤波器将每个图像分解为低频base layer和高频detail layer。降雨条纹和对象的细节都保留在detail layer。将base layer从训练过程中删除,从而大大简化了CNN需要学习的映射。detail layer是CNN去除雨水的输入。为了进一步改善视觉质量,我们引入了图像增强步骤以锐化两层的效果。
论文笔记参考:https://blog.csdn.net/h_l_dou/article/details/82810393

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值