论文阅读:Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal

2017 TIP :DerainNet

这篇文章也是傅雪阳大佬发的,有点像他2017的另一篇CVPR:DDN

在这里插入图片描述

文章第一个将深度卷积神经网络CNN用于单幅图像去雨,同时在细节层而不是在图像域训练网络。

前人工作:
诸如低秩模型、稀疏编码、字典学习、层先验方法、GMM等等,这里不再赘述。
存在问题:
之前的方法仅通过低层特性将雨纹从对象细节中分离出来。
当物体的结构和方向与雨纹相似时,这些方法很难同时去除雨纹和保存结构信息。
另一方面,人类可以利用上下文信息等高级功能,轻松地在一张图像中分辨出雨纹。
因此,提出了一种基于深度CNN网络的去雨方法。

文章的主要贡献:
1、DerainNet直接自动从数据中学习了干净层和雨的细节层(即,高分辨率层)之间的非线性映射函数,同时进行了去雨和图像增强来改善视觉效果。
2、使用图像处理领域的知识来修正目标函数,提高去雨质量,而不是使用增加神经元或叠加隐藏层等常用策略来有效地逼近期望的映射函数。
3、合成数据集

网络结构:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值