TensorFlow系列
浅蓝的风
一场简单的旅行
展开
-
tensorflow中gen_math_ops.inv()函数的使用
1.功能计算输入的x的倒数2.参数x:是Tensor,数据类型必须是`float16`, `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.3.样例代码import tensorflow as tffrom tensorflow.python.ops import gen_math_opsintpu_x = tf.constant(3, dtyp...原创 2021-12-02 17:12:56 · 559 阅读 · 0 评论 -
tensorflow中tf.raw_ops.ApplyCenteredRMSProp()函数的使用
1. 功能居中RMSProp算法使用居中第二矩(即方差)的估计值进行归一化,而普通RMSProp则使用(非居中)第二矩。这通常有助于训练,但在计算和内存方面略显昂贵。需要注意的是,在这个算法的密集实现中,即使grad为零,mg、ms和mom也会更新,但在这个稀疏实现中,mg、ms和mom在grad为零的迭代中不会更新。mean_square = decay * mean_square + (1-decay) * gradient ** 2mean_grad = decay * mean_grad原创 2021-11-27 10:48:38 · 1205 阅读 · 0 评论 -
tensorflow 中ScatterNdSub()函数的使用
import tensorflow as tfimport numpy as np'''功能: 在给定的变量内根据 indices 。对变量中的单个值或切片进行稀疏减法。参数: ref:是具有等级 P 的 Tensor ,而 indices 是具有等级 Q 的 Tensor 。 indices:必须是整数张量,其中包含 ref 的索引。它必须是形状 [d_0, ..., d_{Q-2}, K] ,其中 0 < K <= P 。 indices:最里面的.原创 2021-11-25 17:02:41 · 321 阅读 · 0 评论 -
tensorflow中tf.raw_ops.ScatterMin()函数的使用
1. 功能将updates的值,通过索引(indices)指定inputs对应位置上的值做比较取最小值(也就是更新inputs上对应的之)2. 参数ref:数据输入indices:用来指定ref位置updates:用来更新ref值的数据3. 代码import tensorflow as tf"""功能: 将updates的值,通过索引(indices)指定inputs对应位置上的值做比较取最小值(也...原创 2021-11-18 17:49:04 · 1413 阅读 · 0 评论 -
tf.pad()函数的使用讲解
这个函数主要是对数据矩阵边缘进行填充import tensorflow as tfimport numpy as nparr = np.array(np.arange(1, 10)).reshape([3, 3])print(arr)b = tf.pad(arr, paddings=[[0, 1], [1, 2]])sess = tf.InteractiveSession()print(b.eval())"""[[1 2 3] [4 5 6] [7 8 9]]------原创 2021-08-20 17:40:50 · 540 阅读 · 0 评论 -
TensorFlow中tf.gather()函数的使用讲解
下面我们直接看使用方法和功能介绍:import tensorflow as tfimport numpy as np"""1. 该函数的参数讲解: tf.gather( params, 传入的tensor indices, 指定的索引 validate_indices=None, 不重要 name=None, 命名 a原创 2021-08-19 11:35:32 · 4391 阅读 · 3 评论 -
tensorflow中tf.ones_like()和tf.zeros_like() 函数使用讲解
该函数的使用如下,其中包含该函数的参数和功能讲解:import tensorflow as tf"""1. 该函数的参数讲解: tf.ones_like(tensor, 需要传入的tensor dtype='', 返回的数据类型 name='') 命名2. 功能: 根据传入的tensor的形状创建一个同形状,值为1的tensor"""p1 = tf.placeholder(shape=[2], dt原创 2021-08-19 11:09:29 · 1218 阅读 · 0 评论 -
Anaconda构建虚拟环境
一、windows环境下构建anaconda的虚拟环境 1. 创建命令:conda create -n 变量名称 python=3.8(指定python的版本) 2. 查看刚建好的虚拟环境位置:二、Linux环境下构建anaconda的虚拟环境注:后面补上...原创 2021-07-20 21:34:24 · 817 阅读 · 0 评论 -
TensorFlow(between-graph replication)分布式实现线性回归
一、服务器的搭建 注:示例采用的TensorFlow版本为 1.4.0import tensorflow as tf"""这是集群服务的构建构建在 server.py 文件中""""""运行命令:python server.py --job_name=ps --task_index=0python server.py --job_name=ps --task_index=1python server.py --job_name=worker --task_ind...原创 2021-07-05 00:21:09 · 513 阅读 · 0 评论 -
TensorFlow的分布式集群-简单分布式示例
一、构建集群: 1. 构建集群的代码示例 注:本示例代码使用的 TensorFlow 版本为 1.4.0# server_distribute.py 文件中构建集群import tensorflow as tf"""这是集群服务的构建""""""运行命令:python server_distribute.py --job_name=ps --task_index=0python server_distribute.py --job_n...原创 2021-07-04 17:25:01 · 672 阅读 · 0 评论 -
Windows10安装TensorFlow-GPU版本及其依赖
一、安装TensorFlow GPU版本 1. 执行命令:pip install tensorflow-gpu==1.4.0 2. 检查是否安装成功: 在python中输入命令,提示需要安装CUDAPython 3.6.2 |Anaconda, Inc.| (default, Sep 19 2017, 08:03:39) [MSC v.1900 64 bit (AMD64)] on win32Type "help", "copyright...原创 2021-07-03 17:13:07 · 763 阅读 · 0 评论