目标检测系列
文章平均质量分 60
浅蓝的风
一场简单的旅行
展开
-
深度学习中AP、mAP、recall、IoU、NMS的评价指标介绍
1、通过混淆矩阵实例给大家讲解各个指标:混淆矩阵 预测 0 1 真实 0 TN FP 1 FN TP 真阳率:代表将真实正样本划分为正样本的概率 伪阳率:代表将真实负样本划分为正样本的概率 精确率:precision = TP / (TP + FP) 召回率:recall = TP / (TP + FN) 准确率:accuracy = (TP + TN) ...原创 2021-09-15 14:03:17 · 7962 阅读 · 0 评论 -
深度学习中的批归一化batch normal(BN)的讲解
1、BN层的作用:卷积神经网络学习过程的本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也会大大降低。对于输入的数据,已经进行了人为的归一化,由于前面训练参数的更新将导致后面层输入数据分布的变化。为了解决这个问题,使用了批归一化的方法。在网络的每一个卷积层之后,激活函数之前,又插入了一个归一化层。此方法是将每一层的激活值进行归一化之后,将它们映射到服从高斯分布的方差为1均值为0的区域,从而解决了梯度消失的问题。当梯度变大之后,网络更新速度和训练速度变快,带来...原创 2021-09-14 17:31:15 · 1817 阅读 · 0 评论 -
目标检测中YOLOv1、YOLOv1、YOLOv3算法介绍
一、YOLOv1算法介绍 1、YOLOv1简介是one-stage系列中的一种,把检测问题转化到回归上来,一个CNN即可完成检测流程。 2、算法结构 ① 他的核心思想就是利用整张图作为网络的输入,将目标检测作为回归问题解决,直接在输出层回归预选框的位置以及所属的类别,YOLO最左边是一个inceptionV1网络,共20层。但作者对inceptionV1进行了改造,他没有使用inception模块,而是...原创 2021-08-29 14:38:06 · 1518 阅读 · 0 评论 -
SSD算法原理介绍,包含算法结构、Loss计算、默认框计算几个方面
一、SSD算法的介绍 1、SSD算法:是One-stage目标检测算法中的一种,不需要region proposal阶段,可以直接产生物体的类别概率和位置坐标值,经过单词检测即可直接得到最终的检测结果,具有检测速度快的特点。 2、SSD算法结构: ① 主干网络:是由VGG16中部分卷积层组成,并将最后2层的conv6和conv7换成全连接层,用来进行图像分类 ...原创 2021-08-28 18:16:12 · 13171 阅读 · 0 评论 -
YOLOv3中使用kmeans算法生成anchors
我们直接看代码逻辑:# coding: utf-8# This script is modified from https://github.com/lars76/kmeans-anchor-boxesfrom __future__ import division, print_functionimport numpy as npdef iou(box, clusters): """ Calculates the Intersection over Union (IoU)原创 2021-08-18 16:16:19 · 1081 阅读 · 0 评论