文章目录
一、 参数量和理论计算量
1、计算公式:
假设卷积核大小为 K h × K w {K_h×K_w} Kh×Kw,输入通道数为 C i n {C_{in}} Cin,输出通道数为 C o u t {C_{out}} Cout,输出特征图的宽和高分别为 W {W} W和 H {H} H,这里忽略偏置项
- CONV 标准卷积层:
- params: K h × K w × C i n × C o u t {K_h×K_w×C_{in}×C_{out}} Kh×Kw×Cin×Cout
- FLOPs: K h × K w × C i n × C o u t × H × W = p a r a m s × H × W {K_h×K_w×C_{in}×C_{out}×H×W = params×H×W} Kh×Kw×Cin×Cout×H×W=params×H×W
- FC 全连接层(相当于 k=1):
- params: C i n × C o u t {C_{in}×C_{out}} Cin×Cout
- FLOPs: C i n × C o u t {C_{in}×C_{out}} Cin×Cout
二、轻量级网络
1、 SqueezeNet
文章的的核心是提出了一个fire module, 如下图所示:
在fire module中有三个可调参数:s, e1, e3分别代表各个卷积核的个数。在论文中给出的参数设置方法是 e 1 = e 3 = 4 s 1 {e_1=e_3=4s_1} e1=e3=4s1