特征提取模型的轻量化之路(一)

本文探讨了模型轻量化的重要性和不同方法,重点介绍了SqueezeNet和MobileNet系列(v1、v2、v3)如何通过深度可分离卷积减少计算量和参数数。SqueezeNet利用fire module实现高效,MobileNet系列通过深度可分离卷积和创新结构(如inverted residuals、线性瓶颈和h-swish激活)在保持或提高准确性的同时降低了复杂性。此外,文章还强调了深度可分离卷积在模型轻量化中的核心作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、 参数量和理论计算量

1、计算公式:

假设卷积核大小为 K h × K w {K_h×K_w} Kh×Kw,输入通道数为 C i n {C_{in}} Cin,输出通道数为 C o u t {C_{out}} Cout,输出特征图的宽和高分别为 W {W} W H {H} H,这里忽略偏置项

  • CONV 标准卷积层:
  1. params: K h × K w × C i n × C o u t {K_h×K_w×C_{in}×C_{out}} Kh×Kw×Cin×Cout
  2. FLOPs: K h × K w × C i n × C o u t × H × W = p a r a m s × H × W {K_h×K_w×C_{in}×C_{out}×H×W = params×H×W} Kh×Kw×Cin×Cout×H×W=params×H×W
  • FC 全连接层(相当于 k=1):
  1. params: C i n × C o u t {C_{in}×C_{out}} Cin×Cout
  2. FLOPs: C i n × C o u t {C_{in}×C_{out}} Cin×Cout

二、轻量级网络

1、 SqueezeNet

文章的的核心是提出了一个fire module, 如下图所示:
在这里插入图片描述
在fire module中有三个可调参数:s, e1, e3分别代表各个卷积核的个数。在论文中给出的参数设置方法是 e 1 = e 3 = 4 s 1 {e_1=e_3=4s_1} e1=e3=4s1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值