求Hurst指数的意义:
作为判断时间序列数据遵从随机游走还是有偏的随机游走过程的指标。简单来说就是为了通过计算的这个指数判断一下未来的趋势,也有用来判断时间序列平稳性的。
Hurst指数估计的方法有很多,按照时域和频域可以分为如下几个【1】:
时域:方差-时间法、聚合序列绝对值法、R/S法(用得最多)和趋势波动分析(DFA)
频域:周期图法、Whittle估计法和小波分析法
Hurst指数在不同范围下的意义:【2】
DFA的计算原理和计算步骤(关于DFA的计算版本有很多,这里只是其中的一种)
已知:一个时间序列,长度为N,记作X,时间序列表示为{xi},i = 1,2,…,N;
①取序列,选择合适的区间长度,也就是时间窗s,将序列划分为长度为s的不重叠等长度子区间,长度为N的子序列就会被分成Ns = N/s个段,但是想一下极端的事件,时间序列的个数是个质数怎么办,不要后面除不尽的又好浪费数据,于是为保证序列信息不丢失,可以取两次数据,第一次丢掉最后几个取不到的数据,第二次就倒着看,正着算,丢掉前面几个取不到的数据。
N s = f l o o r ( N / s ) , 其 中 f l o o r ( ) 表 示 向 下 取 整 Ns = floor(N/s),其中floor()表示向下取整 Ns=floor(N/s),其中floor()表示向下取整
m 1 = N s ∗ s m1 = Ns*s m1=Ns∗s
X 1 = x 1 , x 2 , . . . x m 1 X1 = {x1,x2,...xm1} X1=x1,x2,...xm1
m 2 = N − m 1 m2 = N-m1
Hurst指数估计方法(时域)——DFA
最新推荐文章于 2025-03-08 09:00:00 发布