基于transformers T5相关模型用法

T5Tokenizer

  1. 模型加载
      tokenizer = T5Tokenizer.from_pretrained(model_params[“MODEL”])
  2. encode
source = self.tokenizer.batch_encode_plus(
            [source_text],
            max_length=self.source_len,
            pad_to_max_length=True,
            truncation=True,
            padding="max_length",
            return_tensors="pt",
        )
source_ids = source["input_ids"].squeeze()
source_mask = source["attention_mask"].squeeze()
  1. decode
tokenizer.decode(g, skip_special_tokens=True,
                  
### 使用T5大型语言模型的方法 对于开发者而言,使用T5(Text-To-Text Transfer Transformer)这一强大的预训练模型可以极大地简化自然语言处理任务。Hugging Face的Transformers库提供了便捷的方式加载并应用此模型。 #### 加载与初始化T5模型 为了开始使用T5模型,首先需安装`transformers`库以及PyTorch或其他支持框架。接着可以通过如下Python代码片段来实例化一个特定版本的T5模型: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('t5-base') # 或者 't5-large', 't5-small' 等其他变体 model = T5ForConditionalGeneration.from_pretrained('t5-base') ``` 上述代码创建了一个基于`t5-base`大小的基础版T5模型及其配套分词器[^2]。 #### 输入数据准备 当准备好要输入的数据时,应当将其转换成适合传递给模型的形式。这通常涉及将原始字符串转化为token IDs列表,并设置适当的特殊标记如bos_token、eos_token等。下面是一个简单的例子展示如何编码一段文本供T5处理: ```python input_text = "translate English to German: The house is wonderful." inputs = tokenizer(input_text, return_tensors="pt") # 将文本转为tensor形式 ``` 这里假设目标是从英语翻译到德语的任务描述被包含在输入串中作为前缀。 #### 执行推理过程 一旦完成了必要的准备工作之后就可以调用模型来进行预测操作了。具体来说就是向模型传入之前构建好的tokens张量,并获取输出结果: ```python outputs = model.generate(**inputs) translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"Translated text: {translated_text}") ``` 这段脚本会打印出由T5生成的目标语言译文。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值