Chapter 1 MIMO无线通信系统发展

本文深入探讨了大规模MIMO技术,介绍了从传统SISO到MIMO的发展历程,重点讲解了大规模MIMO系统特征、研究进展及其在5G移动通信中的应用。文章分析了大规模MIMO的信道特点,包括最佳传播条件、非平稳性、阵列组态及用户信道建模,揭示了其在提升系统容量、降低复杂度和功耗方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博主不定期更新【保研/推免、C/C++、5G移动通信、Linux、生活随笔】系列文章,喜欢的朋友【点赞+关注】支持一下吧!


本系列文章均摘录自《大规模MIMO传输理论与关键技术》

Chapter 1 MIMO无线通信系统发展

1.1 MIMO无线通信系统发展简史

​传统无线通信系统中,接收端和发射端通常都采用单天线形式,称为单输入单输出(Single Input Single Output,SISO)系统。SISO系统的信道容量可以表示为: C = W l o g 2 ( 1 + S / N ) C=Wlog_2(1+S/N) C=Wlog2(1+S/N),其中 W W W S / N S/N S/N分别表示信道带宽和接收信噪比。该式给出了系统在加性高斯白噪声信道中进行无差错传输的最大速率。此时,无论运用什么样的信道编码方法和调制方案,只能逼近系统容量C而无法超越它。因此系统容量是一个不可逾越的上界,这也成为了现代通信系统的一个瓶颈问题

天线分集:对抗多径效应、提高链路的稳定性等性能。

多输入多输出(Multiple Input Multiple Output,MIMO)技术已成为第四代(4th Generation,4G)移动通信系统中的关键技术,其基本原理是在无线通信的发送端和接收端同时采用多个发送天线或接收天线,发送机利用多个天线进行独立传输,而接收机则利用多个天线来恢复原始信息。MIMO技术源于智能天线和分集技术,是单入多出(SIMO)和多入单出(MISO)技术的结合,其能够充分利用空间资源以及多径传播特性,在不增加频谱资源和发射功率的前提下,通过先进的无线传输和信号处理技术,建立并行传输机制,从而成倍地提升信道容量

MIMO系统的接收/发送算法——贝尔实验室空时分层码(Bell Labs Layered Space-Time,BLAST)算法 ⟹ f u r t h e r m o r e \stackrel{furthermore}{\Longrightarrow} furthermore 垂直贝尔实验室空时分层码(Vertical Bell Labs Layered Space-Time,V-BLAST)算法 ⟹ \Longrightarrow 建立了一套MIMO实验室系统,在室内实验时达到了20b/s/Hz的频谱利用率。

MIMO的空间分集技术主要指的是空时编码技术,其中最重要的两种空时编码方法是空时格形码(Space Time Trellis Coding,STTC)和空时分组码(Space Time Block Coding,STBC)。

MIMO系统的空间复用技术保证了通信系统的有效性,发射分集技术提高了通信系统的可靠性。

1.2 大规模MIMO系统特征及当前研究进展

1.2.1 大规模MIMO系统研究需求

5G移动通信需要在参考信号设计、信道设计、信道信息反馈、多用户调度机制以及基带处理算法等方面进行改进和优化,以支持大规模天线技术的应用。

1.2.2 基本原理及系统特征

基本特征:大规模MIMO系统在基站覆盖区域内配置数十根甚至数百根天线,较4G系统中的4(或8)根天线数增加一个量级以上,这些天线以大规模阵列方式集中放置;分布在基站覆盖区内的多个用户,在同一时频资源上,利用基站大规模天线配置所提供的空间自由度,与基站同时进行通信,提升频谱资源在多个用户之间的复用能力、各个用户链路的频谱效率以及抵抗小区间干扰的能力,由此大幅提升频谱资源的整体利用率;与此同时,利用基站大规模天线配置所提供的分集增益和阵列增益,每个用户与基站之间通信的功率效率也可以得到进一步显著提升。

大规模MIMO系统的应用将在系统容量、信号处理算法、节能、硬件实现、系统时延及可靠性等方面带来诸多好处,具体可以总结为以下几点:

(1)大规模MIMO系统可提升系统容量10倍以上,同时提升能量效率100倍以上。

(2)由于用户间信道趋近正交,大规模MIMO系统中的多种线性MIMO空间处理方法[包括MRC/MRT,迫零(Zero Forcing,ZF),最小均方误差(Minimum Mean Square Error,MMSE)]的性能趋于一致,采用最简单的线性处理方法就可以达到良好性能,从而大大降低了大规模天线带来的基带信号处理的复杂度,使得现有基带芯片可以有能力去实时处理几百个天线单元采集的信号。

(3)大规模MIMO技术可大幅度降低基站的功耗和成本,使其商用化成为可能。

(4)大规模MIMO可以减少空间延时。

(5)大规模MIMO可增强系统鲁棒性。

(6)当多天线系统趋于大型化时,一些基本的系统特性也将会发生变化。首先,随机矩阵理论的渐近性将会更加明显。传统多天线系统中的随机性将在大规模MIMO系统中变得确定。此外,高矩阵或扁矩阵的条件数(最大奇异值与最小奇异值之比)将得到大大改善。当维数较大时,一些矩阵操作,如矩阵求逆等,都可以通过级数展开等技术得以快速实现。随着多天线系统维度的增加,系统热噪声将被平均掉,从而系统将主要受限于来自终端间的干扰。其次,随着阵列孔径的增加,系统的分辨率将会大大提升。阵列的通信性能对传播信道实际统计特性的依赖将逐渐减弱,转而更加依赖于信道的聚集特性。大规模MIMO系统能够同时服务的终端数量不再受限于天线的个数,而是受限于终端数量较大时信道状态信息获取的能力

1.2.3 主要研究内容

主要研究内容:1.应用场景建模与信道建模;2.传输与检测技术;3.信道状态信息测量与反馈技术;4.覆盖增强技术以及高速移动解决方案;5.多用户调度与资源管理技术;6.大规模有源阵列天线技术。

1.2.4 研究现状

1.3 MIMO无线衰落信道的基本特征

通过无线信道传播的信号会沿着大量不同的路径到达目的地,这些不同路径称为多径。信号在无线信道传播过程中的强度改变称为衰落,信号的衰落取决于传输信号的性质以及多径信道的统计特性,包含路径损耗、大尺度衰落、小尺度衰落。

路径损耗和大尺度衰落只影响链路的预算和平均的接收信号信噪比(Signal Noise Ratio,SNR),可以通过闭环的反馈和调整发射机的发射功率来克服。但是,小尺度衰落使得接收信号形成快速的波动,因此调整发射机的发射功率并没有多少作用。小尺度衰落直接影响系统的性能(比如容量、错误概率等),缓解小尺度衰落的有效方法就是采用分集技术时间分集、频率分集和空间分集)。

MIMO技术通过空间复用、传输分集、波束成形3种技术来提高频谱利用率和信号传输质量。波束成形技术要求发射机知道信道状态信息,而空间复用和空间分集技术则没有这一要求。

假设发送端有 N t N_t Nt根天线,接收端有 N r N_r Nr根天线,则它们之间的信道矩阵包含 N r × N t {N_r\times N_t} Nr×Nt条路径,对于时不变窄带平坦衰落MIMO系统来说,有如下模型:
y = H x + n (1.2) \boldsymbol y=\boldsymbol H\boldsymbol x+\boldsymbol n \tag{1.2} y=Hx+n(1.2)

其中, y \boldsymbol y y N r × 1 N_r\times 1 Nr×1的接收信号向量, x \boldsymbol x x N t × 1 N_t\times 1 Nt×1的发送信号向量, H \boldsymbol H H N r × N t {N_r\times N}_t Nr×Nt的信道传播矩阵,并且是一个确定性的、在一个相干时间间隔内都保持不变的矩阵, n \boldsymbol{n} n N r × 1 N_r\times 1 Nr×1的高斯白噪声向量,其元素是均值为0、方差为1的独立同分布复高斯变量。
在这里插入图片描述

MIMO系统工作流程如下:发射数据流 s \boldsymbol s s经过空时编码、数模转换和模拟模块处理,被分离为 N t N_t Nt路子数据流,以相同的频率分别经过 N t N_t Nt根发射天线同时发射出去。发射的信号经过无线信道的反射、散射等传播,这些并行子信号经过不同的路径在不同的时刻到达接收机,由 N r N_r Nr根天线接收。接收机采用先进的信号处理技术,对各个天线接收到的信号进行联合处理,从而恢复出原始数据流。

1.4 大规模MIMO信道特点

1.4.1 大规模MIMO信道的最佳传播条件

大规模MIMO系统中无线信道的一个关键特性就是终端信道之间的相互正交性,称为信道的最佳传播条件。在最佳传播条件下,可以通过简单的线性处理技术获得最佳的系统性能。为了获得最佳传播条件,信道向量 { g k } , k = 1 , ⋯   , K \{g_k\},k=1,\cdots,K {gk}k=1,,K之间必须满足成对正交,即:
g i H g j = { 0 , i , j = 1 , ⋯   , K , i ≠ j ∥ g k ∥ 2 , k = 1 , ⋯   , K (1.17) g_i^Hg_j=\left\{\begin{aligned}&0, &&i,j=1,\cdots,K,\quad i\neq j \\&\|g_k\|^2,&&k=1,\cdots,K\end{aligned}\right. \tag{1.17} giHgj={0,gk2,i,j=1,,K,i=jk=1,,K(1.17)
实际中上述条件很难完全成立,只能近似获得,这时称信道提供了近似最佳的传播条件;或者当天线数 M M M增大且 k ≠ j k\neq j k=j时,若

1 M g j H g k → 0 ,   M → ∞ (1.18) \frac{1}{M}g_j^Hg_k\rightarrow0,\ M\rightarrow\infty \tag{1.18} M1gjHgk0, M(1.18)

则称信道是渐近最佳的。实际中若要判断信道是否是最佳的,一个有效的指标就是信道的条件数,即矩阵 G H G G^HG GHG最小和最大奇异值的比值。

考虑大规模MIMO系统下的两种信道模型,即独立同分布的瑞利衰落模型和随机均匀分布的视距传播模型。这两种模型分别对应着两种极端情形:丰富散射场景和无散射场景。文献[24]分析了大规模系统在这两种信道模型下的信道状况,并指出独立同分布的瑞利衰落信道和随机均匀分布的视距传播信道都能提供渐近最佳的传播条件。独立同分布的瑞利衰落信道的奇异值很好地分布于其最大值和最小值之间,视距传播信道的奇异值则多集中于其最大奇异值附近并只有少量很小的奇异值。因此,在均匀分布的视距传播模型中如果选择性地丢弃少量终端用户,那么信道传播条件将近似最佳。实际应用场景往往介于上述两种模型之间,因而可以合理推测:在大多数实际环境中,信道的传播条件都是渐近最佳的。

1.4.2 大规模MIMO信道的非平稳性

一些文献实测了大规模MIMO系统的室外无线信道特征。根据实测数据,对典型的信道参数,包括功率时延分布、功率角度时延谱、功率角度谱、功率时延谱以及角度扩展和时延扩展等都进行了分析。所有实测结果都表明,不同于传统MIMO系统,大规模MIMO信道在时延域和空间域上都呈现出非平稳特征

信道的非平稳性意味着在大规模阵列范围内信道的统计特性将会发生变化,阵列将经历大尺度衰落。对单用户而言,信道不再是独立同分布的随机向量。不同用户的接收功率水平也将会有较大的差异。

1.4.3 大规模MIMO阵列组态及球面波前

大规模MIMO系统中天线阵列的组态通常包括线阵、面阵、圆柱形阵列等。不同阵列组态决定了阵列的孔径和分辨力。

当大规模天线以线阵形式放置时,其将拥有最大的空间角度分辨力,但其只能用于一维平面,无法同时得到用户信道的俯仰角信息,同时天线数量的增加将使得线阵的尺寸变得非常大。另一方面,当天线阵列以面阵、圆柱等2D/3D结构布置时,可以有效地控制阵列的物理尺寸,并使阵列具备同时分辨水平角和仰角的能力,便于大规模系统的空间复用。然而,2D/3D等形式的阵列密集部署将显著增加天线之间的耦合。对于平面方阵,每个天线阵元周围将存在4个邻接阵元,而在3D阵列中则会有6个。天线元素间隔的减小将进一步增加相互之间的耦合,因此为了获得良好的系统性能,耦合补偿或消除将变得不可避免

大规模MIMO系统中天线阵列的组态对系统分辨力、天线耦合等都有着重要的影响,需要根据实际需求进一步深入研究。

1.4.4 大规模MIMO用户信道建模

在最佳传播条件下,用户信道之间渐近正交。而在实际大规模MIMO系统的很多情况下用户信道之间往往会遭受强相关的影响。面对信道相关的场景,考虑到信道环境的非平稳性,标准的MIMO信道建模方式已经不再适用于大规模MIMO信道特性的表征。结合上面提到的大规模信道的非平稳性、阵列范围的统计特性变化和用户接收功率的不平衡等因素,大规模MIMO系统的建模需要将小尺度、大尺度衰落以及可能存在的视距传播主径等因素全部考虑进来。

性质单链路MIMO多链路MIMO大规模MIMO
衰落相关小尺度衰落大尺度衰落小尺度及大尺度衰落
空间相关链路内链路间链路内及链路外
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月半 月半

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值