YOLOV5测试及训练自己的数据集

首先说一下软硬件配置这一块:win10 + i7-9700kf + rtx2070Super + cuda10.2 + anaconda

官方模型
Yolov5检测流程:
yolov5源码
.pt
自己训练的模型
实现检测

一、YOLOv5 实现检测

1.1 下载源码

进入官方地址,进行源码下载   https://github.com/ultralytics/yolov5[大概4M左右]

1.2 下载官方模型(.pt文件)

文中作者是把模型都放到了谷歌网盘里了,如果没有梯子,访问会很慢–>>作者给的模型地址
如果你实在是下载不下来,并且如果你也还有积分的话–>>CSDN下载模型【可怜可怜孩子吧】
再如果你没有积分,好吧,好吧,那就,那就,那就留邮箱吧,但别忘了给卑微的我点个赞呦、、、额额额额
2020.10.21更: 想要模型文件的直接私信我,我一开始设置的5积分,但是积分自己涨的太多了,花那么多积分下载不值当
2021.04.03更:yolov5官方pt模型文件【点我,我是模型地址】如果链接失效,请及时评论区给我反馈,我及时更新

1.3 配置虚拟环境

虚拟环境的优点不再阐述
创建虚拟环境:conda create -n yolov5 python==3.7在yolov5中尽量用python3.7
进  入  环  境 :conda activate yolov5
再安装所需库:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt(使用清华镜像源)
在pip install的时候,可能会出现read timeout的情况,你需要更换镜像源,或者多执行几次pip install,如果还有其他报错,请留言评论区,我会及时回复,因为我在安装的时候也报了一些错,但是都没有记录下来
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

1.4 进行测试

进入到yolov5根目录下,我这里是用的powershell,你也可以在控制台,都是一样的。在这里插入图片描述
运行测试文件:   python detect.py --source 0 【0:是指定的本机摄像头】PS:我特么的竟然一次运行成功,多少是挺失望

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓雷霆嘎巴↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ZBC↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

在这里插入图片描述

在这里插入图片描述在这里插入图片描述

二、YOLOV5 实现训练

2.1 首先是准备数据集

★    数据集的准备工作,我以前的博客有细写过,—>>传送门
★    数据集准备好后,一定先确保label和JPEGImages这两个文件夹在同一目录里
在这里插入图片描述

2.2 文件修改

2.2.1 修改数据集方面的yaml文件

作者是把以前用的.data、.names文件合并到了data/coco.yaml中,打开coco.yaml进行修改

# COCO 2017 dataset http://cocodataset.org
# Download command: bash yolov5/data/get_coco2017.sh
# Train command: python train.py --data ./data/coco.yaml
# Dataset should be placed next to yolov5 folder:
#   /parent_folder
#     /coco
#     /yolov5


# 这些是生成的图片的路径文件,这里是我自己的路径,需要修改成你自己的路径,绝对路径也ok
train: ../coco/2007_train.txt  # 118k images
val: ../coco/2007_val.txt  # 5k images
test: ../coco/2007_test.txt  # 20k images for submission to https://competitions.codalab.org/competitions/20794

# 你数据集的类别数
nc: 1

# 类别的名称
names: ['cell phone']

# Print classes
# with open('data/coco.yaml') as f:
#   d = yaml.load(f, Loader=yaml.FullLoader)  # dict
#   for i, x in enumerate(d['names']):
#     print(i, x)

2.2.2 修改网络参数方面的yaml文件

这个相当于以前版本的.cfg文件,在models/yolov3-spp.yaml【当然,你想用哪个模型就去修改对应的yaml文件】

# parameters
nc: 1  # 数据集类别数
depth_multiple: 1.0  # expand model depth
width_multiple: 1.0  # expand layer channels

# anchors【你也可以使用k-means去产出你自己数据集的anchors】
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# darknet53 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   [-1, 1, Bottleneck, [64]],
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4
   [-1, 2, Bottleneck, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 5-P3/8
   [-1, 8, Bottleneck, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 7-P4/16
   [-1, 8, Bottleneck, [512]],
   [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
   [-1, 4, Bottleneck, [1024]],  # 10
  ]

# yolov3-spp head
# na = len(anchors[0])
head:
  [[-1, 1, Bottleneck, [1024, False]],  # 11
   [-1, 1, SPP, [512, [5, 9, 13]]],
   [-1, 1, Conv, [1024, 3, 1]],
   [-1, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [1024, 3, 1]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],  # 16 (P5/32-large)

   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, Bottleneck, [512, False]],
   [-1, 1, Bottleneck, [512, False]],
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [512, 3, 1]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],  # 24 (P4/16-medium)

   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P3
   [-1, 1, Bottleneck, [256, False]],
   [-1, 2, Bottleneck, [256, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],  # 30 (P3/8-small)

   [[], 1, Detect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

2.2.3 修改train.py中的一些参数

train.py在根目录里,修改一些主要的参数,奥利给
在这里插入图片描述

parser.add_argument('--epochs', type=int, default=200)  # 训练的epoch
parser.add_argument('--batch-size', type=int, default=16)  # batch_size 显卡垃圾的话,就调小点
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='*.cfg path')
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')

2.3开始训练

直接 python train.py 就Ok了

成功训练如图所示
在这里插入图片描述
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓无情哈拉少↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

在这里插入图片描述
在这里插入图片描述

2.4 ?

都已经在训练了,你接下来还有最重要的一步,就是看个日本特产电影啥的,或者是吃个瓜啥的,拉个屎啥的,反正我是去拉屎了🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵🐵在这里插入图片描述
等它训练完就没问题了,但是还是要时不时看一眼,具体看什么,我也不知道呀,反正是看就完事儿了🐷🐷🐷🐷🐷🐷🐷🐷🐷🐷🐷🐷🐷🐷🐷🐷

都训练完了,测试的话,就不用再说的吧,阿sir,

三、个人对于yolov5的看法

先说一个情况吧,我在复现yolov4时,使用1080p的摄像头进行测试的时候,检测的帧率只有1.7fps(在我的rtx2070s显卡上),不管我如何调整cfg文件里的宽高,基本都无济于事,然后我用480p的摄像头才可以达到20fps,不要搞我啊,阿sir,现在摄像头基本都是在1080p检测的啊,480p怎么能满足!!!!!我不知道为什么图像在相同的cfg参数下,分辨率对检测速度影响会这么大。但是,啊,但是,我在用yolov5的时候,用1080P就可以达到实时,最主要的是yolov5的模型非常小,比yolo的前几个系列小了大概4倍,非常适合做嵌入。对于yolov5,虽然是作者自封的,但是非常达到我心里的预期!!!,不吹不黑,yolov5是我遇到最牛啤的目标检测算法,你说呢,你是不是也这么感觉的呢

在这里插入图片描述在这里插入图片描述在这里插入图片描述

已标记关键词 清除标记
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Windows10</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集测试训练出的网络模型、性能统计<span>(mAP</span>计算<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
相关推荐
<p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">YOLO</span><span style="font-family:'微软雅黑',sans-serif;">系列是基于深度学习的端到端实时目标检测方法。 <span>PyTorch</span>版的<span>YOLOv5</span>轻量而性能高,更加灵活和便利。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv5</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">本课程的<span>YOLOv5</span>使用<span>ultralytics/yolov5</span>,在<span style="color:#e03e2d;"><strong><span>Windows</span></strong></span>系统上做项目演示。包括:安装<span>YOLOv5</span>、标注自己的数据集、准备自己的数据集、修改配置文件、训练自己的数据集测试训练出的网络模型和性能统计。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">希望学习Ubuntu上演示的同学,请前往 </span><span style="font-family:微软雅黑, sans-serif;">《</span><span style="font-family:微软雅黑, sans-serif;">YOLOv5(PyTorch)</span><span style="font-family:微软雅黑, sans-serif;">实战:训练自己的数据集(Ubuntu)》课程链接:https://edu.csdn.net/course/detail/30793</span><span style="font-family:宋体;"><span style="font-size:14px;"> </span></span> </p> <p style="margin-left:0cm;">   </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090636458614.jpg" alt="课程内容" width="880" height="356" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090637068681.jpg" alt="技巧" width="880" height="706" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090637267536.jpg" alt="功能" width="880" height="913" /> </p>
<p> <span style="font-size:18px;color:#E53333;"><strong><span style="color:#000000;">课程演示环境:Ubuntu</span><br /> <br /> <span style="color:#000000;">需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:训练自己的数据集》,课程链接https://edu.csdn.net/course/detail/28748</span><br /> <br /> YOLOv4</strong></span><span style="font-size:18px;color:#E53333;"><strong>来了!速度和精度双提升!</strong></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">与</span><span style="font-size:16px;"> YOLOv3 </span><span style="font-size:16px;">相比,新版本的</span><span style="font-size:16px;"> AP(精度) </span><span style="font-size:16px;">和</span><span style="font-size:16px;"> FPS </span><span style="font-size:16px;">(每秒帧率)分别提高了</span><span style="font-size:16px;"> 10% </span><span style="font-size:16px;">和</span><span style="font-size:16px;"> 12%</span><span style="font-size:16px;">。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">YOLO系列是基于深度学习的端到端实时目标检测方法。本课程将手把手地教大家使用</span><span style="font-size:16px;">labelImg</span><span style="font-size:16px;">标注和使用</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">本课程的</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">使用</span><span style="font-size:16px;">AlexAB/darknet</span><span style="font-size:16px;">,在</span><span style="font-size:16px;">Ubuntu</span><span style="font-size:16px;">系统上做项目演示。包括:安装</span><span style="font-size:16px;">YOLOv4、</span><span style="font-size:16px;">标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集测试训练出的网络模型、性能统计</span><span style="font-size:16px;">(mAP</span><span style="font-size:16px;">计算和画出</span><span style="font-size:16px;">PR</span><span style="font-size:16px;">曲线</span><span style="font-size:16px;">)</span><span style="font-size:16px;">和先验框聚类分析。还将介绍改善</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标训练性能的技巧。</span><span></span> </p> <p> <span style="font-size:16px;"> </span> </p> <p> <span style="font-size:16px;">除本课程《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:训练自己的数据集》外,本人将推出有关</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测的系列课程。请持续关注该系列的其它视频课程,包括:</span><span></span> </p> <p> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:人脸口罩佩戴识别》</span><br /> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测实战:中国交通标志识别》</span><br /> <span style="font-size:16px;">《</span><span style="font-size:16px;">YOLOv4</span><span style="font-size:16px;">目标检测:原理与源码解析》</span> </p> <p> <br /> </p> <p> <span style="font-size:16px;"><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260858382698.jpg" alt="" /><br /> </span> </p> <p> <span style="font-size:16px;"><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260858535136.jpg" alt="" /><br /> </span> </p> <p> <span style="font-size:16px;"><img src="https://img-bss.csdn.net/202004260859074920.jpg" alt="" /><br /> </span> </p> <p> <span></span> </p> <p> <span></span> </p>
<p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">YOLO系列是基于深度学习的端到端实时目标检测方法。 PyTorch版的YOLOv5轻量而性能高,更加灵活和便利。 </span> </p> <p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">本课程将手把手地教大家使用labelImg标注和使用YOLOv5训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。 </span> </p> <p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">本课程的YOLOv5使用ultralytics/yolov5,在<strong><span style="color:#e03e2d;">Ubuntu</span></strong>系统上做项目演示。包括:安装YOLOv5、标注自己的数据集、准备自己的数据集、修改配置文件、训练自己的数据集测试训练出的网络模型和性能统计。 </span> </p> <p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">希望学习在Windows系统上演示的学员,请前往《YOLOv5(PyTorch)实战:训练自己的数据集(Windows)》</span><span style="font-family:微软雅黑, sans-serif;">课程链接:https://edu.csdn.net/course/detail/30923</span> </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090632026212.jpg" alt="课程内容" width="880" height="356" /> </p> <p class="MsoNormal"> <img src="https://img-bss.csdnimg.cn/202010090632284127.jpg" alt="技巧" width="880" height="706" /> </p> <p class="MsoNormal"> <img src="https://img-bss.csdnimg.cn/202010090633275608.jpg" alt="功能" width="880" height="913" /> </p>
<span style="color:#E53333;"><span style="color:#000000;"> </span></span> <p style="font-size:16px;"> <span style="color:#3A4151;">课程演示环境:Ubuntu </span> </p> <p style="font-size:16px;"> </p><p> <span><span style="color:#0070C0;">需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:人脸口罩佩戴检测》</span></span> </p> <p> <span><span style="color:#0070C0;">课程链接:https://edu.csdn.net/course/detail/29123</span></span>  </p> <p style="font-size:16px;"> <span style="background-color:#FFFFFF;">当前,人脸口罩佩戴检测是急需的应用,而YOLOv4是最新的强悍的目标检测技术。本课程使用</span><strong><span style="color:#C00000;">YOLOv4实现实时的人脸口罩佩戴检测</span></strong><span style="background-color:#FFFFFF;">。课程提供</span><strong><span style="color:#C00000;">超万张已标注人脸口罩数据集</span></strong><span style="background-color:#FFFFFF;">。训练后的YOLOv4可对真实场景下人脸口罩佩戴进行</span><span style="background-color:#FFFFFF;">高精度地</span><span style="background-color:#FFFFFF;">实时检测。</span> </p> <p style="font-size:16px;"> <span style="background-color:#FFFFFF;"><br /></span> </p> <p style="font-size:16px;"> <span><span style="background-color:#FFFFFF;"><span style="font-size:16px;">本课程会讲述本项目超万张人脸口罩数据集的制作方法,包括使用labelImg标注工具标注以及如何使用Python代码对第三方数据集进行修复和清洗。</span><br /></span></span> </p> <p style="font-size:16px;"> <span><span style="background-color:#FFFFFF;"><br /></span></span> </p> <p style="font-size:16px;"> 本课程的YOLOv4使用AlexyAB/darknet,在Ubuntu系统上做项目演示。具体项目过程包括:安装YOLOv4、训练集和测试集自动划分、修改配置文件、训练网络模型、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类分析。  </p> <p style="font-size:16px;"> <br /></p> <p style="font-size:16px;"> <br /></p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/202005200601524939.jpg" alt="" /></p> <p style="font-size:16px;"> <strong>YOLOv4人脸口罩佩戴检测效果</strong> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/202005200603052758.jpg" alt="" /></p> <p style="font-size:16px;"> <br /></p> <span style="color:#000000;"></span>
<p style="background:white;"> <span style="font-family:'微软雅黑',sans-serif;color:#313d54;">PyTorch</span><span style="font-family:'微软雅黑',sans-serif;color:#313d54;">版的<span>YOLOv5</span>是轻量而高性能的实时目标检测方法。利用<span>YOLOv5</span>训练完自己的数据集后,如何向大众展示并提供落地的服务呢?<span> </span></span> </p> <p style="background:white;">   </p> <p style="background:white;"> <span style="font-family:'微软雅黑',sans-serif;color:#313d54;">本课程将提供相应的解决方案,具体讲述如何使用<span>Web</span>应用程序框架<span>Flask</span>进行<span>YOLOv5</span>的<span>Web</span>应用部署。用户可通过客户端浏览器上传图片,经服务器处理后返回图片检测数据并在浏览器中绘制检测结果。<span> </span></span> </p> <p style="background:white;">   </p> <p style="background:white;"> <span style="font-family:'微软雅黑',sans-serif;color:#313d54;">本课程的<span>YOLOv5</span>使用<span>ultralytics/yolov5</span>,在</span><strong><span style="font-family:'Helvetica',sans-serif;color:#c00000;">Ubuntu</span></strong><span style="font-family:'微软雅黑',sans-serif;color:#313d54;">系统上做项目演示,并提供在</span><strong><span style="font-family:'微软雅黑',sans-serif;color:#c00000;">Windows</span></strong><span style="font-family:'微软雅黑',sans-serif;color:#313d54;">系统上的部署方式文档。</span> </p> <p style="background:white;"> <span style="font-family:'微软雅黑',sans-serif;color:#313d54;">本项目采取前后端分离的系统架构和开发方式,减少前后端的耦合。课程包括:<span>YOLOv5</span>的安装、 <span>Flask</span>的安装、<span>YOLOv5</span>的检测<span>API</span>接口python代码、 <span>Flask</span>的服务程序的python代码、前端<span>html</span>代码、<span>CSS</span>代码、<span>Javascript</span>代码、系统部署演示、生产系统部署建议等。</span> </p> <p style="background:white;"> <span style="font-family:'微软雅黑',sans-serif;color:#313d54;"> </span> </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<span style="background-color:#ffffff;"><strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong></span> </p> <p> <img src="https://img-bss.csdnimg.cn/202010271340349334.jpg" alt="yolov5部署演示" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010271340598046.jpg" alt="系统架构" /> </p>
©️2020 CSDN 皮肤主题: 黑客帝国 设计师:白松林 返回首页