luogu P4716 【模板】最小树形图

题目背景

这是一道模板题。

题目描述

给定包含 nn 个结点, mm 条有向边的一个图。试求一棵以结点 rr 为根的最小树形图,并输出最小树形图每条边的权值之和,如果没有以 rr 为根的最小树形图,输出 -1−1。

输入格式

第一行包含三个整数 n,m,rn,m,r,意义同题目所述。

接下来 mm 行,每行包含三个整数 u,v,wu,v,w,表示图中存在一条从 uu 指向 vv 的权值为 ww 的有向边。

输出格式

如果原图中存在以 rr 为根的最小树形图,就输出最小树形图每条边的权值之和,否则输出 -1−1。

输入输出样例

输入

4 6 1
1 2 3
1 3 1
4 1 2
4 2 2
3 2 1
3 4 1

输出 

3

输入

4 6 3
1 2 3
1 3 1
4 1 2
4 2 2
3 2 1
3 4 1

输出

4

输入 

4 6 2
1 2 3
1 3 1
4 1 2
4 2 2
3 2 1
3 4 1

输出

-1

说明/提示

样例 11 解释

最小树形图中包含第 22, 55, 66 三条边,总权值为 1 + 1 + 1 = 31+1+1=3

样例 22 解释

最小树形图中包含第 33, 55, 66 三条边,总权值为 2 + 1 + 1 = 42+1+1=4

样例 33 解释

无法构成最小树形图,故输出 -1−1 。

数据范围

对于所有数据,1 \leq u, v \leq n \leq 1001≤u,v≤n≤100, 1 \leq m \leq 10^41≤m≤104​​, 1 \leq w \leq 10^61≤w≤106​​。

 

kuangbin模板:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int N = 110;
const int M = 2e4 + 10;

struct Edge {
    int u, v, cost;
}edge[N];

int g[N][N], pre[N], id[N], vis[N], in[N];

int zhuliu(int root, int n, int m) {
    int res = 0, u, v;
    while(1) {
        for(int i = 0; i < n; ++i) in[i] = inf;
        for(int i = 0; i < m; ++i) {
            if(edge[i].u != edge[i].v && edge[i].cost < in[edge[i].v]) {
                pre[edge[i].v] = edge[i].u;
                in[edge[i].v] = edge[i].cost;
            }
        }
        for(int i = 0; i < n; ++i)
            if(i != root && in[i] == inf)
                return -1;
        int tn = 0;
        memset(id, -1, sizeof(id));
        memset(vis, -1, sizeof(vis));
        in[root] = 0;
        for(int i = 0; i < n; ++i) {
            res += in[i];
            v = i;
            while(vis[v] != i && id[v] == -1 && v != root) {
                vis[v] = i;
                v = pre[v];
            }
            if(v != root && id[v] == -1) {
                for(int u = pre[v]; u != v; u = pre[u])
                    id[u] = tn;
                id[v] = tn++;
            }
        }
        if(tn == 0) break;
        for(int i = 0; i < n; ++i)
            if(id[i] == -1)
                id[i] = tn++;
        for(int i = 0; i < m; ) {
            v = edge[i].v;
            edge[i].u = id[edge[i].u];
            edge[i].v = id[edge[i].v];
            if(edge[i].u != edge[i].v)
                edge[i++].cost -= in[v];
            else
                swap(edge[i], edge[--m]);
        }
        n = tn;
        root = id[root];
    }
    return res;
}

int main() {
    int n, m, root;
    scanf("%d%d%d", &n, &m, &root);
    for(int i = 0; i < n; ++i)
        for(int j = 0; j < n; ++j)
            g[i][j] = inf;
    int u, v, w;
    while(m--) {
        scanf("%d%d%d", &u, &v, &w);
        if(u == v) continue;
        g[u - 1][v - 1] = min(g[u - 1][v - 1], w);
    }
    int tot = 0;
    for(int i = 0; i < n; ++i) {
        for(int j = 0; j < n; ++j) {
            if(g[i][j] < inf) {
                edge[tot].u = i;
                edge[tot].v = j;
                edge[tot++].cost = g[i][j];
            }
        }
    }
    int ans = zhuliu(root - 1, n, tot);
    if(ans == -1) printf("-1\n");
    else printf("%d\n", ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值