题目背景
这是一道模板题。
题目描述
给定包含 nn 个结点, mm 条有向边的一个图。试求一棵以结点 rr 为根的最小树形图,并输出最小树形图每条边的权值之和,如果没有以 rr 为根的最小树形图,输出 -1−1。
输入格式
第一行包含三个整数 n,m,rn,m,r,意义同题目所述。
接下来 mm 行,每行包含三个整数 u,v,wu,v,w,表示图中存在一条从 uu 指向 vv 的权值为 ww 的有向边。
输出格式
如果原图中存在以 rr 为根的最小树形图,就输出最小树形图每条边的权值之和,否则输出 -1−1。
输入输出样例
输入
4 6 1 1 2 3 1 3 1 4 1 2 4 2 2 3 2 1 3 4 1
输出
3
输入
4 6 3 1 2 3 1 3 1 4 1 2 4 2 2 3 2 1 3 4 1
输出
4
输入
4 6 2 1 2 3 1 3 1 4 1 2 4 2 2 3 2 1 3 4 1
输出
-1
说明/提示
样例 11 解释
最小树形图中包含第 22, 55, 66 三条边,总权值为 1 + 1 + 1 = 31+1+1=3
样例 22 解释
最小树形图中包含第 33, 55, 66 三条边,总权值为 2 + 1 + 1 = 42+1+1=4
样例 33 解释
无法构成最小树形图,故输出 -1−1 。
数据范围
对于所有数据,1 \leq u, v \leq n \leq 1001≤u,v≤n≤100, 1 \leq m \leq 10^41≤m≤104, 1 \leq w \leq 10^61≤w≤106。
kuangbin模板:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int N = 110;
const int M = 2e4 + 10;
struct Edge {
int u, v, cost;
}edge[N];
int g[N][N], pre[N], id[N], vis[N], in[N];
int zhuliu(int root, int n, int m) {
int res = 0, u, v;
while(1) {
for(int i = 0; i < n; ++i) in[i] = inf;
for(int i = 0; i < m; ++i) {
if(edge[i].u != edge[i].v && edge[i].cost < in[edge[i].v]) {
pre[edge[i].v] = edge[i].u;
in[edge[i].v] = edge[i].cost;
}
}
for(int i = 0; i < n; ++i)
if(i != root && in[i] == inf)
return -1;
int tn = 0;
memset(id, -1, sizeof(id));
memset(vis, -1, sizeof(vis));
in[root] = 0;
for(int i = 0; i < n; ++i) {
res += in[i];
v = i;
while(vis[v] != i && id[v] == -1 && v != root) {
vis[v] = i;
v = pre[v];
}
if(v != root && id[v] == -1) {
for(int u = pre[v]; u != v; u = pre[u])
id[u] = tn;
id[v] = tn++;
}
}
if(tn == 0) break;
for(int i = 0; i < n; ++i)
if(id[i] == -1)
id[i] = tn++;
for(int i = 0; i < m; ) {
v = edge[i].v;
edge[i].u = id[edge[i].u];
edge[i].v = id[edge[i].v];
if(edge[i].u != edge[i].v)
edge[i++].cost -= in[v];
else
swap(edge[i], edge[--m]);
}
n = tn;
root = id[root];
}
return res;
}
int main() {
int n, m, root;
scanf("%d%d%d", &n, &m, &root);
for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
g[i][j] = inf;
int u, v, w;
while(m--) {
scanf("%d%d%d", &u, &v, &w);
if(u == v) continue;
g[u - 1][v - 1] = min(g[u - 1][v - 1], w);
}
int tot = 0;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j) {
if(g[i][j] < inf) {
edge[tot].u = i;
edge[tot].v = j;
edge[tot++].cost = g[i][j];
}
}
}
int ans = zhuliu(root - 1, n, tot);
if(ans == -1) printf("-1\n");
else printf("%d\n", ans);
return 0;
}