宇宙最强推荐风控书单 ▍风控书单《现代信用卡管理》《数据化风控-信用评分建模教程》 《信用评分工具:自动化信用管理的理论与实践》红宝书 《消费信用模型:定价、利润与组合》蓝宝书 《信用评分应用-第二版》绿宝书 《消费金融真经:个人贷款业务全流程指南》第2版 蓝色 《一本书看透信贷:信贷业务全流程深度剖析》 《智能风控:原理、算法与工程实践》《智能风控:Python金融风险管理与评分卡建模》 《智能风控与反欺诈:体系、算法与实践》 《智能风控:评分卡建模原理、方法与风控策略构建》 《Python金融大数据风控建模实战:基于机器学习
智能风控体系之PagePank算法应用 在贷后资金归集的场景中,构建交易流水的关联网络,这个网络内的节点PR值越大,越有可能是资金归集账户。节点中心度在交易网络中,可以衡量网络中资金流向某个节点的概率,流入节点概率越大则节点的中心度越高。
智能风控体系之层次分析法专家评分卡 建立风控策略及模型的目标是筛选出好客户进件放款。为达到这一目标,从客户的还款能力和还款意愿两个方面来考虑。还款能力主要看客户的基本信息、工作信息以及行内信息;还款意愿主要看客户的信用信息和三方信息。
信贷风控新纪元:行为评分建模的魅力和挑战 行为评分以客户的行为数据为基础,预测其未来一段时间(如:接下来的12个月)内的违约风险。这种模型具有很高的灵活度和实时性,贷款机构通常每个月都会更新这类行为分数,以便及时发现和管理风险。
揭秘风控黑科技:如何用KS指标精准预测违约风险? 将原始模型的KS统计量与随机分数的KS统计量进行比较,如果原始模型的KS统计量明显大于随机分数的KS统计量,就可以认为模型具有统计显著性,即模型的预测能力不是由随机因素引起的。
个性化风控!消费贷客群分群模型应用实践 消费贷客群分群模型:入模变量差异大,分箱显著差异。验证效果:KS、AUC、lift对比。优于通用模型,提升预测精度。也期待各位在学习时能够保持独立思考能力,脚踏实地的不断优化数据科学知识。