N.1 join类型和join策略
N.1.1 join类型
1)内连接 inner join 2)全连接或外连接 full outer join 实际查询语句中还可以写作 full join。 3)左外连接 和 右外连接 (1)right outer join 也写作 right join(右连接)。 (2)left outer join 也写作 left join(左连接)。 4)左半连接 left semi join 是 in/exists 子查询的一种更高效的实现。 案例:select a.pk, a.value from a left semi join b on (a.pk = b.pk) 5)左反连接 left anti join 案例 a left anti join b 的功能是在查询过程中,剔除 a 表中和 b 表有交集的部分 6)笛卡尔积连接 cross join 如果不带WHERE条件子句,它将会返回被连接的两个表的笛卡尔积,返回结果的行数等于两个表行数的乘积; 7)类是where name is [not] table (1)left_semi表示只保留左表ID ”在“ 右表ID 的数据 (2)left_anti表示只保留左表ID “不在” 右表ID 的数据。 (3)这两个参数适用于处理类似于“存在性”和“非存在性”等问题。 |
N.1.2 join策略
6000字总结Spark的5种join策略(建议收藏)_51CTO博客_spark join策略 , 下面要求是spark2.4以上版本,spark2.4只有广播join.这次spark3.0有变成了如下的情况 1)广播join(Broadcast Hash Join或map join) 使用条件 (1)大表和小表join, 且数据必须很小,可以通过spark.sql.autoBroadcastJoinThreshold 参数来配置,默认是 10MB,如果你的内存比较大,可以将这个阈值适当加大; 如果将 spark.sql.autoBroadcastJoinThreshold 参数设置为 -1,可以关闭 BHJ; (2)只能用于等值 Join,不要求参与Join的keys可排序; (3)除了 full outer joins,支持所有的 Join连接类型。 2)分治join(Shuffle hash join)使用条件 (1)大表和“相对小表”join, 小表的大小(plan.stats.sizeInBytes)必须小于 spark.sql.autoBroadcastJoinThreshold * spark.sql.shuffle.partitions; 而且小表大小的三倍必须小于等于大表的大小 (2)只能用于等值 Join,不要求参与 Join 的 Keys 可排序; (3)spark.sql.join.preferSortMergeJoin 参数必须设置为 false,参数是从 Spark 2.0.0 版本引入的,默认值为 true,也就是默认情况下选择 Sort Merge Join; 3)分区排序join(Sort Merge Join)使用条件 (1)仅支持等值 Join,并且要求参与 Join 的 Keys 可排序; 4)笛卡儿积join (Cartesian Join)使用条件 (1)必须是 inner Join,其支持等值和不等值 Join。 5)广播嵌套循环join(Broadcast Nested Loop Join)使用条件 (1)Broadcast nested loop join 支持等值和不等值 Join,支持所有的 Join 类型。 6)小结:虽然spark 是自动选择join策略类型的,但由于 Spark 的计算引擎优化器不是万能的,有些场景下会选择错误的 Join 策略,所以 Spark 2.4 & Spark 3.0 引入了 Join hint,也就是用户可以自己选择 Join 策略。上面的代码可以看出,用户指定的 Join hint 优先级最高。 |
N.2 join策略具体介绍
1)Broadcast Hash Join BHJ 又称 map-side-only join,从名字可以看出,Join 是在 map 端进行的。这种 Join 要求一张表很小,小到足以将表的数据全部放到 Driver 和 Executor 端的内存中,而另外一张表很大。 |
2)Shuffle Hash Join 它的计算思想是:把大表和小表按照相同的分区算法和分区数进行分区(根据参与 Join 的 keys 进行分区),这样就保证了 hash 值一样的数据都分发到同一个分区中。 |
3)Sort Merge Join 也是对两张表参与 Join 的 Keys 使用相同的分区算法和分区数进行分区,目的就是保证相同的 Keys 都落到相同的分区里面。分区完之后再对每个分区按照参与 Join 的 Keys 进行排序,最后 Reduce 端获取两张表相同分区的数据进行 Merge Join,也就是 Keys 相同说明 Join 上了。 |
4)Cartesian Join 和 MySQL 一样,如果 Spark 中两张参与 Join 的表没指定 where 条件(ON 条件)那么会产生 Cartesian product join,这个 Join 得到的结果其实就是两张行数的乘积。 5)Broadcast Nested Loop Join |